**Supplementary Information** 

## Monodisperse RuO<sub>2</sub> nanoparticles for highly transparent and rapidly responsive supercapacitor electrodes

Ilhwan Ryu<sup>†</sup>, Dongju Kim<sup>†</sup>, Guenpyo Choe, Sohyun Jin, Dajung Hong\* and Sanggyu Yim\*

Department of Chemistry, Kookmin University, Seoul 02707, South Korea

\* Corresponding authors: Dajung Hong (solar@kookmin.ac.kr), Sanggyu Yim

(sgyim@kookmin.ac.kr)



Figure S1. Powder X-ray diffraction pattern of the synthesized pristine RuO<sub>2</sub> NPs.



Figure S2. Photographs of (a) pristine  $RuO_2$  NPs dispersed in ethanol and (b) OA-decorated  $RuO_2$  NPs dispersed in octane and taken at various times after dissolution.



Figure S3. FTIR spectra of the pristine and OA-decorated RuO<sub>2</sub> NP-based electrodes.



Figure S4. Photograph of OA-decorated  $RuO_2$  NPs of various concentrations (from left to right: 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, and 20.0 mg/ml) dispersed in octane. Taken after 24 h of dissolution.



**Figure S5.** Surface FE-SEM images of thin films spin-coated with 10 mg/ml solution of (a) pristine  $RuO_2$  NPs dispersed in ethanol and (b) OA-decorated  $RuO_2$  NPs dispersed in octane.



**Figure S6.** Transmittance spectra of thin films spin-coated with 10 mg/ml solution of (a) pristine RuO<sub>2</sub> NPs dispersed in ethanol and (b) OA-decorated RuO<sub>2</sub> NPs dispersed in octane. (c) Schematic illustrating measurement points on the films. (d) Mean and spread of the average transmittance over the visible wavelength range for pristine RuO<sub>2</sub> and RuO<sub>2</sub>–OA NP-coated films.



**Figure S7.** Plots of C–H stretching band intensity in FT-IR and water contact angle of the RuO<sub>2</sub>–OA NP-coated films as a function of the annealing temperature.



**Figure S8.** (a) Surface FE-SEM images of  $RuO_2$ –OA NP-coated films after annealing at various temperatures for 1 h. (b) Powder X-ray diffraction pattern of the  $RuO_2$ –OA NP-coated films after annealing at 200°C for 1 h.



**Figure S9.** Transmittance spectra of  $RuO_2$  NP-based electrodes prepared by (a) single and (b) double deposition of various NP concentration solutions.



**Figure S10.** Representative cross-sectional FE-SEM images of  $RuO_2$  NP-based electrodes. The  $RuO_2$  film thicknesses were (a) 15.0, (b) 22.3, (c) 38.4 and (d) 44.5 nm. (e) Plot of measured thicknesses as a function of optical absorbance. The thicknesses of the thinnest two films were determined using their absorbance and the fitting line from the measured data.



**Figure S11.** (a) *I-V* characteristics of  $RuO_2$  NP-based electrodes with various optical transmittances ( $T_{vis}$ ). (b) A schematic illustration of the *I-V* measurement system.



**Figure S12.** Cyclic voltammograms of RuO<sub>2</sub> NP-based transparent electrodes with  $T_{vis}$  of (a) 97.1%, (b) 93.4%, (c) 88.6%, (d) 83.5%, and (e) 79.1% measured at various scan rates.



**Figure S13.** Plots of optical transmittance obtained from experiments (blue points) and simulations using Eq. 2 (red dashed lines) as a function of the areal capacitance at scan rates of (a) 10, (b) 50, and (c) 100 mV/s.



**Figure S14.** Deconvolution of areal capacitances measured at scan rates of (a) 10, (b) 50, and (c) 100 mV/s for RuO<sub>2</sub> NP-based electrodes with various transmittances. The shaded and solid regions represent surface capacitive and diffusion-controlled insertion elements, respectively.



**Figure S15.** (a) Photographs of the large-area full-cell device fabricated by spray-coating of  $RuO_2$  NPs. (b) Transmittance spectra of a single electrode and symmetric device. (c) Cyclic voltammograms of the device measured at various scan rates. (d) Capacitance retention as a function of the scan rate.

| Annealing<br>temperature (°C) | Relative C-H stretching intensity in FT-IR (%) | Water contact<br>angle (°) |
|-------------------------------|------------------------------------------------|----------------------------|
| RT                            | 100                                            | 89.7                       |
| 100                           | 91.5                                           | 81.9                       |
| 150                           | 56.5                                           | 55.7                       |
| 200                           | 3.4                                            | 36.9                       |

**Table S1.** Summary of the relative C–H stretching band intensity in FT-IR and the water contact angle of  $RuO_2$ –OA NP-coated films after annealing at various temperatures for 1 h.

**Table S2.** Comparison of the optical transmittance and areal capacitance of transparent supercapacitor electrodes and devices in published literature.

| Active material                     | Transmittance<br>(%) | Areal capacitance<br>(mF/cm <sup>2</sup> ) | Reference                                     |
|-------------------------------------|----------------------|--------------------------------------------|-----------------------------------------------|
| Graphene QD*                        | 93.0                 | 0.009                                      | Nano Energy <u>26</u> (2016)<br>746           |
| Graphene*                           | 75.0                 | 0.101                                      | Chem. Mater. <u>27</u> (2017)<br>3621         |
| SWCNT                               | 92.0                 | 0.552                                      | Nanotech. <u>27</u> (2016)<br>235403          |
| Carbon nanocup*                     | 71.0                 | 1.22                                       | Sci. Rep. <u>2</u> (2012) 773                 |
| PEDOT:PSS*                          | 65.0                 | 1.18                                       | J. Mater. Chem. A <u>4</u><br>(2016) 10493    |
| Au/MnO <sub>2</sub> network         | 76.0                 | 3.23                                       | Small <u>13</u> (2017)<br>1701906             |
| RuO <sub>2</sub> /N-doped graphene* | 34.1                 | 1.57                                       | Sustain. Energy Fuels <u>2</u><br>(2018) 1799 |
| RuO <sub>2</sub> /PEDOT             | 93.0                 | 1.20                                       | Nano Energy <u>28</u> (2016)<br>495           |
| RuO <sub>2</sub> NP                 | 97.9<br>93.4         | 0.85<br>1.66                               | This work                                     |

\*Data for devices. The others are data for electrodes