Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

A Novel Mechanism of Controlling Ultramicropore Size in Carbons at Subangstrom Level for Molecular Sieving of Propylene/propane Mixtures

Shengjun Du ^a, Jiawu Huang ^a, Abdul Waqas Anjum ^b, Jing Xiao ^{b*}, Zhong Li ^{a,b*}

[a] School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, PR China E-mail: cezhli@scut.edu.cn

[b] The Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, Guangzhou, PR China E-mail: cejingxiao@scut.edu.cn

Table of Contents

Supporting Figures

Figure. S1 SEM micrographs of SCHs.

Figure. S2 SEM micrographs of Starch-800.

Figure. S3 ¹³C CP-MAS spectra of SCMS-0.2-800.

Figure. S4 Full survey XPS spectra of starch and Starch-800.

Figure. S5 Deconvolution of C 1s spectra for starch and Starch-800.

Figure. S6 Full survey XPS spectra and deconvolution of C 1s spectra for SCHs.

Figure. S7 Full survey XPS spectra for SCMS-0.2-y.

Figure. S8 Deconvolution of C 1s spectra for SCMS-0.2-y.

Figure. S9 N₂ adsorption isotherms at 77 K on SCMS-0.05-y, SCMS-0.2-y and SCMS-1-y.

Figure. S10 CO₂ adsorption isotherms at 273 K on Starch-800, SCMS-x-800 and SCMS-0.2-y.

Figure. S11 C_3H_6 and C_3H_8 adsorption isotherms of Starch-800 at 298 K and 0-1 bar.

Figure. S12 C_3H_6 and C_3H_8 adsorption isotherms of SCMS-0.05-800 and SCMS-1-800 at 298 K and 0-1 bar.

Figure. S13 Surface area plot of SCMS-0.05-800 and SCMS-1-800.

Figure. S14 Surface area plot of SCMS-0.2- *y*.

Figure. S15 C_3H_6 adsorption isotherms of SCMS-0.2-800 at different temperatures and Virial fitting of the C_3H_6 adsorption isotherms.

Figure. S16 Heat of adsorption for C₃H₆ on SCMS-0.2-800.

Figure. S17 Schematic illustration of the apparatus for the gas breakthrough tests.

Figure. S18 Breakthrough cycling test of SCMS-0.2-800.

Figure. S19 C_3H_6 and C_3H_8 adsorption isotherms of SCMS-0.2-800 at high temperature and high pressure.

Supporting Tables

Table S1 Elemental compositions of SCHs from XPS analysis.

Table S2 Summary of separation metrics of top-performing materials for separation of C_3H_6/C_3H_8 based on thermodynamics at 1 bar and 298K.

Table S3 Textural properties of SCMS-0.2-y samples.

4. References

Supporting Figures

Figure S1. SEM micrographs of SCHs.

Figure S2. SEM micrographs of Starch-800.

Figure S3. ¹³C CP-MAS spectra of SCMS-0.2-800.

Figure S4. Full survey XPS spectra of starch and Starch-800.

Figure S5. Deconvolution of C 1s spectra for (a) starch and (b) Starch-800.

Figure S6. (a) Full survey XPS spectra of SCHs; (b-c) Deconvolution of C 1s spectra for SCHs.

XPS technique was applied to further reveal the composition and functionality of hydrochars (Figure S6). The obvious signals of C (284.8 eV) and O (532.8 eV) were observed without other impurities. The C₁ spectrum of SCH-*x* can be deconvoluted into three peaks corresponding to C=C/C-C (284.5 eV), C-O (285.7 eV) and C=O (287.5 eV).

Figure S7. Full survey XPS spectra of SCMS-0.2-*y*.

Figure S8. Deconvolution of C 1s spectra for SCMS-0.2-y.

When pyrolysis at high temperature is applied, It is noticed that with the attenuation of the C–O signals in the C1s envelopes, O-C=O (290.2 eV) bond signal showed up due to its high binding energy that is expected to be the partly remaining form of oxygen after annealing to high temperature (600-900 °C).¹

Figure S9. N₂ adsorption isotherms at 77 K on (a) SCMS-0.05- *y*; (b) SCMS-0.2-*y* and (c) SCMS-1- *y*.

Figure S10. Adsorption isotherms of CO₂ on (a) Starch-800 and SCMS-*x*-800; (B) SCMS-0.2-*y*.

Figure S11. C_3H_6 and C_3H_8 adsorption isotherms of Starch-800 at 298 K and 0-1 bar. C_3H_6 : solid circles, C_3H_8 : empty circles

Figure S12. C₃H₆ and C₃H₈ adsorption isotherms of (a) SCMS-0.05-800 and (b) SCMS-1-800 at 298 K and 0-1 bar. C₃H₆: solid circles, C₃H₈: empty circles

Figure S13. Surface area plot for SCMS-0.05-800 and SCMS-1-800.

Figure S14. Surface area plot for SCMS-0.2-y.

Figure S15. (a) C_3H_6 adsorption isotherms of SCMS-0.2-800 at three different temperatures and (b) Virial fitting of the C_3H_6 adsorption isotherms (points).

The isosteric heat of adsorption can be estimated from the adsorption isotherms at three different temperatures 273 K, 285 K and 298 K by using the Virial equation:²

$$lnP = lnN + 1/T \sum_{i=0}^{m} a_i N_i + \sum_{j=0}^{n} b_j N_j$$

Here, P refers to the pressure (bar), N is the amount absorbed (mmol/g), T is the temperature (K), a_i and b_j are Virial coefficients, and m, n represent the number of coefficients required to adequately describe the isotherms. The values of the Virial coefficients a_0 through a_m were then used to calculate the isosteric heat of absorption using the following expression:

$$Q_{st} = -R \sum_{i=o}^{m} a_i N_i$$

Where the Q_{st} is denoted as the coverage-dependent isosteric heat of adsorption, R refers to the ideal gas constant. The heat enthalpy of C_3H_6 is determined using the isotherms data in the pressure range from 0-1 bar (at 273 to 298 K).

Figure S16. Heat of adsorption for C_3H_6 on SCMS-0.2-800.

Figure S17. Schematic illustration of the apparatus for the gas breakthrough tests.

Figure S18. Breakthrough cycling test of SCMS-0.2-800. C₃H₆: solid circles, C₃H₈: empty circles.

Figure S19. C₃H₆ and C₃H₈ adsorption isotherms of SCMS-0.2-800 at (a) 298 K and 0-8 bar; (b) 353 K and 0-1 bar. C₃H₆: solid circles, C₃H₈: empty circles

Supporting Tables

Samples	C%	O%	Н%
SCH-0.05	69.37	26.50	4.13
SCH-0.2	68.44	27.28	4.28
SCH-1	67.55	28.08	4.37

 Table S1. Elemental compositions of SCHs from elemental analysis.

		C_3H_6 uptake	C ₃ H ₈ uptake	Uptake ratio of	
	Materials	(mmol/g)	(mmol/g)	$C_{3}H_{6}/C_{3}H_{8}$	Kel
	KAUST-7	1.41	~0	œ	3
MOFs	Y-abtc	1.95	~0	œ	4
	Zn ₃ (OH) ₂ (pzdc)(atz)	2.08	~0	œ	5
	Co-gallate	1.79	0.14	12.78	6
	Co(AIP)(BPY) _{0.5}	1.99ª	0.48 ^a	4.14 ^a	7
	CPL-1	1.82	0.29	6.28	8
	AGTU-3a	1.22	0.46	2.65	9
	Zn ₂ (5-aip) ₂ (bpy)	1.91	0.76	2.51	10
	SIFSIX-2-Cu-i	2.65	1.67	1.59	11
	ZnAtzPO ₄	2.13	1.19	1.79	12
Zeolite	Zeolite 13X	3.44 ^b	3.03 ^b	1.14 ^b	13
carbons	SAM-HCP-Ag-3	1.75	0.5	3.50	14
	MC-wiggle	2.6	1.5	1.7	15
	SC-K	2.20	0.41	5.37	16
	SCMS-0.05-800	2.52	0.73	3.45	This work
	SCMS-0.2-800	2.54	0.08	31.75	This work
	SCMS-1-800	2.22	0.02	111	This work
	SCMS-0.2-700	2.24	1.69	1.33	This work
	SCMS-0.2-900	1.81	0.05	36.2	This work

Table S2. Comparison of C₃H₆ and C₃H₈ uptake of top-performing adsorbents at 1 bar and 298 K.

^a: The experiment condition is 273 K and 100 kPa. ^b: The test temperature is 323 K.

Samples	Micropore volume ^a (cm ³ /g)
SCMS-0.2-600	0.220
SCMS-0.2-700	0.224
SCMS-0.2-800	0.238
SCMS-0.2-900	0.221

Table S3. Textural properties of SCMS-0.2-y samples.

^a: Micropore volume given by CO₂ adsorption data based on Dubinin–Radushkevich (D–R) equation

References

- 1. M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho and Y. J. Chabal, *Nat. Mater*, 2010, 9, 840-845.
- L. Li, R.-B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou and B. Chen, *Science*, 2018, 362, 443-+.
- 3. A. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout and M. Eddaoudi, *Science*, 2016, **353**, 137-140.
- H. Wang, X. Dong, V. Colombo, Q. Wang, Y. Liu, W. Liu, X. L. Wang, X. Y. Huang, D. M. Proserpio and A. Sironi, *Adv. Mater.*, 2018, 30, 1805088.
- 5. X.-W. Zhang, D.-D. Zhou and J.-P. Zhang, *Chem*, 2021, DOI: https://doi.org/10.1016/j.chempr.2020.12.025.
- B. Liang, X. Zhang, Y. Xie, R.-B. Lin, R. Krishna, H. Cui, Z. Li, Y. Shi, H. Wu, W. Zhou and B. Chen, J. Am. Chem. Soc., 2020, 142, 17795-17801.
- 7. H. Wu, Y. Yuan, Y. Chen, F. Xu, D. Lv, Y. Wu, Z. Li and Q. Xia, *AlChE J.*, 2020, 66.
- Y. Chen, Z. Qiao, D. Lv, C. Duan, X. Sun, H. Wu, R. Shi, Q. Xia and Z. Li, *Chem. Eng. J.*, 2017, **328**, 360-367.
- 9. Z. Chang, R.-B. Lin, Y. Ye, C. Duan and B. Chen, J. Mater. Chem. A, 2019, 7, 25567-25572.
- 10. Y. Chen, H. Wu, D. Lv, N. Yuan, Q. Xia and Z. Li, Sep. Purif. Technol., 2018, 204, 75-80.
- X. Wang, P. Zhang, Z. Zhang, L. Yang, Q. Ding, X. Cui, J. Wang and H. Xing, *Ind. Eng. Chem. Res*, 2020, **59**, 3531-3537.
- 12. Q. Ding, Z. Zhang, C. Yu, P. Zhang, J. Wang, L. Kong, X. Cui, C.-H. He, S. Deng and H. Xing, *AlChE J.*, 2021, **67**.
- M. Campo, A. Ribeiro, A. Ferreira, J. Santos, C. Lutz, J. Loureiro and A. Rodrigues, Sep. Purif. Technol., 2013, 103, 60-70.
- A. Stephenson, B. Li, L. Chen, R. Clowes, M. E. Briggs and A. I. Cooper, *J. Mater. Chem. A*, 2019, 7, 25521-25525.
- Y.-F. Yuan, Y.-S. Wang, X.-L. Zhang, W.-C. Li, G.-P. Hao, L. Han and A.-H. Lu, *Angew. Chem. Int. Ed.*, 2021, DOI: https://doi.org/10.1002/anie.202106523
- 16. S. Du, X. Wang, J. Huang, K. Kent, B. Huang, I. Karam, Z. Li and J. Xiao, AlChE J., e17285.