## Heterojunction interfacial promotion of fast and prolonged alkali-ion storage of urchin-like Nb<sub>2</sub>O<sub>5</sub>@C nanospheres

Zhipeng Zhao<sup>a,b</sup>, Jingyun Cheng<sup>a,b</sup>, Kai Li<sup>a,b</sup>, Chuanqi Li<sup>a,b</sup>, Shuo Zhang<sup>c</sup>, Xiangdong Pei<sup>d</sup>, Zhulin

Niu<sup>a,b\*</sup>, Zhongyi Liu<sup>a,b</sup>, Yongzhu Fu<sup>a,b</sup> and Dan Li<sup>a,b\*</sup>

<sup>a</sup> College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China

<sup>b</sup> Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China

<sup>c</sup> School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu Province,

730000, P. R. China

<sup>d</sup> Shanxi Supercomputing Center, Lvliang, Shanxi Province, 033000, P. R. China

\*Corresponding authors

E-mail: danli@zzu.edu.cn; niuzhl@zzu.edu.cn



Fig. S1. The XRD pattern of the intermediate material obtained after the hydrothermal reaction, which is index to  $Nb_2O_5$  (PDF card no. 300873).



Fig. S2. The Raman spectrum of the intermediate material obtained after the hydrothermal reaction.



Fig. S3. Survey XPS spectrum of Nb<sub>2</sub>O<sub>5</sub>@C.



Fig. S4. Survey XPS spectrum of the bare  $Nb_2O_5$ .



Fig. S5. High-resolution XPS spectrum of Nb 3d in the bare Nb<sub>2</sub>O<sub>5</sub>.



Fig. S6. High-resolution XPS spectrum of O 1s in the bare  $Nb_2O_5$ .



Fig. S7. Nitrogen sorption isotherms of the bare  $Nb_2O_5$ .



**Fig. S8.** a, b) SEM images and c, d) TEM images of the intermediate material obtained after the hydrothermal reaction.



**Fig. S9.** (a) TEM image, (b) the HAADF image, and (c) elemental mapping images of O and Nb in the bare Nb<sub>2</sub>O<sub>5</sub>.



Fig. S10. The EDS of the bare  $Nb_2O_5$  sample.



Fig. S11. The crystal structure of  $Nb_2O_5$ .



Fig. S12. The FFT diffraction pattern of obtained samples: a) the intermediate, b) bare  $Nb_2O_5$  and c)  $Nb_2O_5@C$ .



Fig. S13. The TG curve of  $Nb_2O_5@C$ .



Fig. S14. a) CV curves at various scan rates, b) relationship between the peak currents and scan rates in logarithmic format of the  $Nb_2O_5@C$  composite in SIBs.



Fig. S15. Sodium-storage properties of the bare  $Nb_2O_5$  in half-cells: a) CV curves at various scan rates, b) relationship between the peak currents (anodic and cathodic peaks) and scan rates in logarithmic format, c) contribution ratios of the capacitive and diffusion-controlled behaviors, d) capacitive contribution (shaded area) in a CV curve at 0.2 mV s<sup>-1</sup>.



Fig. S16. CV curves of bare  $Nb_2O_5$  at the scan rate of 0.1 mV s<sup>-1</sup> between 0.01 and 3 V in the PIBs.



Fig. S17. Relationship between the peak currents and scan rates in logarithmic format of the  $Nb_2O_5@C$  composite in PIBs.



**Fig. S18.** *E vs. t* curve of the Nb<sub>2</sub>O<sub>5</sub>@C composite for a single GITT during discharge process.

The sodium diffusion coefficient  $\binom{D_{Na^+}}{a^+}$  can be calculated using the following equation:

$$D = \frac{4}{\pi\tau} \left(\frac{mV_m}{M_A S}\right)^2 \left(\frac{\Delta E_S}{\Delta E_\tau}\right)^2$$

Where  $\tau$  (s), *m* (g),  $V_m$  (cm<sup>3</sup> mol<sup>-1</sup>),  $M_A$  (g mol<sup>-1</sup>) and S (cm<sup>2</sup>) are constant current pulse time, the active mass of electrode materials, molar volume of the active material, molecular weight and the effective surface area, respectively. And  $\Delta E_s$  (V) presents the difference in the steady state potential of the step at plateau, while  $\Delta E_\tau$  (V) is the total voltage change during a constant current pulse time excluding the *iR* drop as depicted in Fig. S18.



**Fig. S19.** The GITT curves and  ${}^{D}{}_{Na}$  + values at different discharge/charge states at the second cycle of bare Nb<sub>2</sub>O<sub>5</sub> in sodium ion battery.



**Fig. S20.** The GITT curves and  ${}^{D}_{K}$  + values at different discharge/charge states at the second cycle of bare Nb<sub>2</sub>O<sub>5</sub> in potassium ion battery.

It can be found that the  ${}^{D}{}_{K}^{+}$  values of Nb<sub>2</sub>O<sub>5</sub>@C at charge/discharge process are higher than that of bare Nb<sub>2</sub>O<sub>5</sub> whether in SIBs system or PIBs system, indicating the promoted ionic reaction kinetics stemmed from the rich high chemical activity of pyridinic N.



Fig. S21. Galvanostatic discharge/charge profiles of the different cycles of  $Nb_2O_5@C$  at the current density of 3.5 A g<sup>-1</sup> in PIBs.

| Voltage            | $R_{s}(\mathbf{\Omega})$ | $R_{ct} + R_f \left( \boldsymbol{\Omega} \right)$ |
|--------------------|--------------------------|---------------------------------------------------|
| OCV                | 3.56                     | 12.41                                             |
| Discharge to 1.5 V | 3.48                     | 12.87                                             |
| Discharge to 1.0 V | 3.49                     | 12.93                                             |
| Discharge to 0.5 V | 3.47                     | 12.54                                             |
| Charge to 0.01 V   | 3.56                     | 10.89                                             |
| Charge to 1 V      | 3.51                     | 8.92                                              |
| Charge to 2.5 V    | 3.46                     | 10.0                                              |
| Charge to 3.0 V    | 3.34                     | 9.5                                               |

**Table S1.** The fitted values of  $R_s$  and  $R_{ct}+R_f$  at different voltage within the first cycle of Nb<sub>2</sub>O<sub>5</sub>@C in SIBs.

| Voltage            | $R_{s}(\mathbf{\Omega})$ | $R_{ct} + R_f \left( \mathbf{\Omega} \right)$ |
|--------------------|--------------------------|-----------------------------------------------|
| OCV                | 0.2                      | 994.9                                         |
| Discharge to 1.5 V | 5.2                      | 995.9                                         |
| Discharge to 1.0 V | 6.1                      | 792.0                                         |
| Discharge to 0.5 V | 7.4                      | 694.8                                         |
| Charge to 0.01 V   | 1.2                      | 566.2                                         |
| Charge to 1 V      | 2.1                      | 517.9                                         |
| Charge to 2.5 V    | 0.1                      | 495.2                                         |
| Charge to 3.0 V    | 0.2                      | 500.9                                         |

**Table S2.** The fitted values of  $R_s$  and  $R_{ct}+R_f$  at different voltage within the first cycle of Nb<sub>2</sub>O<sub>5</sub>@C in PIBs.



Fig. S22. The Nyquist plots of  $Nb_2O_5$  and  $Nb_2O_5$ @C before cycling in SIBs.

| Sample                            | $R_{s}(\mathbf{\Omega})$ | $R_{ct+}R_{f}\left( \Omega ight)$ |
|-----------------------------------|--------------------------|-----------------------------------|
| Nb <sub>2</sub> O <sub>5</sub>    | 6.11                     | 27.76                             |
| Nb <sub>2</sub> O <sub>5</sub> @C | 4.7                      | 14.4                              |

**Table S3.** The fitted values of solution resistance  $(R_s)$  and the sum of charge transfer resistance and electrolyte/electrode interfacial resistance  $(R_{ct}+R_f)$  of Nb<sub>2</sub>O<sub>5</sub> and Nb<sub>2</sub>O<sub>5</sub>@C before cycling in SIBs.



Fig. S23. The Nyquist plots of Nb<sub>2</sub>O<sub>5</sub> and Nb<sub>2</sub>O<sub>5</sub>@C before cycling in PIBs.

| Sample                            | $R_{s}(\mathbf{\Omega})$ | $R_{ct+}R_{f}\left( \Omega ight)$ |
|-----------------------------------|--------------------------|-----------------------------------|
| Nb <sub>2</sub> O <sub>5</sub>    | 9.2                      | 1393.5                            |
| Nb <sub>2</sub> O <sub>5</sub> @C | 6.7                      | 828.1                             |

**Table S4.** The fitted values of  $R_s$  and  $R_{ct}+R_f$  of Nb<sub>2</sub>O<sub>5</sub> and Nb<sub>2</sub>O<sub>5</sub>@C before cycling in PIBs.



Fig. S24. (a, b) SEM images of Nb<sub>2</sub>O<sub>5</sub>@C tested after 200 cycles at a current density of 1 A  $g^{-1}$  in SIBs.



Fig. S25. (a, b) SEM images of Nb<sub>2</sub>O<sub>5</sub>@C tested after 500 cycles at a current density  $0.5 \text{ A g}^{-1}$  in PIBs.



Fig. S26. The DOS of C, O and Nb.



Fig. S27. The cycling performance of the commercial  $Na_3V_2(PO_4)_3$  at 0.1 A g<sup>-1</sup>.



**Fig. S28.** (a) Rate capability and (b) cycling performance at 1 A  $g^{-1}$  of the Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>//Nb<sub>2</sub>O<sub>5</sub>@C full cell in the voltage window of 1 - 3.5 V.

**Fig. S28**a displays the rate performance of the Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>//Nb<sub>2</sub>O<sub>5</sub>@C full cell in a voltage window of 1 - 3.5 V, showing the capacities of 104.8, 82.5, 69.5, 60.4, 53.1, and 45.8 mA h g<sup>-1</sup> at 0.1, 0.2, 0.5, 1, 2 and 5 A g<sup>-1</sup>, respectively. And the capacity bounced back to 73.8 mA h g<sup>-1</sup> once the current density recovered to 100 mA g<sup>-1</sup>. **Fig. S28**b presents the long-term cycling performance of the full cell, which maintained a capacity of 56.8 mA h g<sup>-1</sup> at 1 A g<sup>-1</sup> over 200 cycles with a Coulombic efficiency closed to 100%.

|                                          |       | Cycling                                          | Rate                           |      |
|------------------------------------------|-------|--------------------------------------------------|--------------------------------|------|
| Materials                                |       | performance                                      | Capability                     | Ref. |
|                                          |       | (mA h g <sup>-1</sup> )                          | (mA h g <sup>-1</sup> )        |      |
|                                          |       | 278 - <del>R</del> ay 100las                     | 280 at 0.1 A g <sup>-1</sup>   |      |
|                                          |       | at 0.1 A g <sup>-1</sup>                         | 250 at 0.2 A g <sup>-1</sup>   |      |
|                                          |       |                                                  | 225 at 0.5 A g <sup>-1</sup>   |      |
| 600-Nb <sub>2</sub> O <sub>5</sub> @NC-2 | SIBs  | 128 after 5000 cycles                            | 200 at 1 A g <sup>-1</sup>     | 1    |
|                                          |       | at 5 A g                                         | 166 at 2 A g <sup>-1</sup>     |      |
|                                          |       | $_{\rm cycles}$ at 10 A $_{\rm o}$ <sup>-1</sup> | 130 at 5 A g <sup>-1</sup>     |      |
|                                          |       | cycles at 10 A g                                 | 98 at 10 A g <sup>-1</sup>     |      |
|                                          |       |                                                  | 195 at 0.5 A g <sup>-1</sup>   |      |
|                                          |       |                                                  | 170 at 1 A g <sup>-1</sup>     |      |
| NhaQa NCs/rGQ                            | SIBs  | 181 after 100 cycles                             | 143 at 2 A g <sup>-1</sup>     |      |
| 102051105/100                            | 51113 | at 0.2 A g <sup>-1</sup>                         | 115 at 5 A g <sup>-1</sup>     | 2    |
|                                          |       |                                                  | 85 at 10 A g <sup>-1</sup>     |      |
|                                          |       |                                                  |                                |      |
|                                          |       |                                                  | 302 at 0.5 C                   |      |
|                                          |       |                                                  | 265 at 1 C                     |      |
|                                          |       |                                                  | 240 at 2 C                     |      |
|                                          |       |                                                  | 225 at 3 C                     |      |
| Nb₂O₅@3D PRS                             | SIBs  | 130 after 7500 cycles                            | 202 at 5 C                     |      |
| 102030002 110                            | 2120  | at 10 C                                          | 176 at 8 C                     | 3    |
|                                          |       |                                                  | 158 at 10 C                    |      |
|                                          |       |                                                  | 140 at 15 C                    |      |
|                                          |       |                                                  | 126 at 20 C                    |      |
|                                          |       |                                                  | 108 at 25 C                    |      |
| T-Nb2O5/<br>CNF                          |       |                                                  | 229 at 0.1 A g <sup>-1</sup>   |      |
|                                          |       | 150 after 5000 cycles<br>at 1 A g <sup>-1</sup>  | 189.8 at 0.2 A g <sup>-1</sup> |      |
|                                          |       |                                                  | 162.9 at 0.5 A g <sup>-1</sup> |      |
|                                          | SIBs  |                                                  | 145.7 at 1 A g <sup>-1</sup>   | 4    |
|                                          |       |                                                  | 129.4 at 2 A g <sup>-1</sup>   |      |
|                                          |       |                                                  | 113.3 at 4 A g <sup>-1</sup>   |      |
|                                          |       |                                                  | 97 at 8 A g <sup>-1</sup>      |      |

**Table S5.** Comparison of the rate capability and cycling performance of Nb<sub>2</sub>O<sub>5</sub>-based composites employed as active material for sodium/potassium-ion electrodes.

| m-Nb <sub>2</sub> O <sub>5</sub> /C             | SIBs                  | 252 after 200 cycles<br>at 0.05 A g <sup>-1</sup><br>125 after 1000 cycles<br>at 1 A g <sup>-1</sup>    | 252 at 0.05 A g <sup>-1</sup><br>123 at 1 A g <sup>-1</sup><br>80 at 2 A g <sup>-1</sup>                                                                                                                                                                      | 5  |
|-------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| S-Nb2O5 HNS@S-<br>rGO                           | SIBs                  | 215 after 100 cycles<br>at 0.5 C<br>140 after 1000 cycles<br>at 5 C<br>100 after 3000 cycles<br>at 20 C | 290 at 0.25 C<br>260 at 0.5 C<br>230 at 1 C<br>180 at 2.5 C<br>155 at 5 C<br>125 at 10 C<br>100 at 20 C                                                                                                                                                       | 6  |
| T-Nb2O5-xFy∝C-<br>NBs                           | SIBs                  | 239 after 100 cycles<br>at 0.05 A g <sup>-1</sup><br>130 after 10000<br>cycles at 1 A g <sup>-1</sup>   | 318 at 0.025 A g <sup>-1</sup><br>292.2 at 0.05 A g <sup>-1</sup><br>264 at 0.1 A g <sup>-1</sup><br>230 at 0.2 A g <sup>-1</sup><br>194 at 0.4 A g <sup>-1</sup><br>178 at 0.8 A g <sup>-1</sup><br>165 at 1 A g <sup>-1</sup><br>141 at 2 A g <sup>-1</sup> | 7  |
| a-H-Nb <sub>2</sub> O <sub>5</sub>              | SIBs                  | 133 after 1000 cycles<br>at 2 C<br>109 after 3000 cycles<br>at 5 C                                      | 185 at 0.5 C<br>181 at 1 C<br>159 at 2 C<br>117 at 5 C<br>84 at 10 C                                                                                                                                                                                          | 8  |
| m-Nb2O5/CNF                                     | SIBs                  | 190.6 after 2500<br>cycles at 10 C<br>175.8 after 3000<br>cycles at 5 C                                 | 286.8 at 0.5 C<br>282.2 at 1 C<br>260.1 at 2.5 C<br>243.9 at 5 C<br>224 at 10 C<br>196.4 at 25 C<br>185.6 at 50 C<br>178.6 at 100 C<br>171.4 at 150 C                                                                                                         | 9  |
| Sb–Nb <sub>2</sub> O <sub>5</sub><br>nanomeshes | SIBs<br>(0.01-2<br>V) | 190 after 500 cycles<br>at 5 A g <sup>-1</sup>                                                          | 270 at 2 A g <sup>-1</sup>                                                                                                                                                                                                                                    | 10 |

| Nb2O5@MoS2@C<br>CNFs                                               | SIBs | About 190 after 1000<br>cycles at 1 A g <sup>-1</sup><br>127 after 20000<br>cycles at 5 A g <sup>-1</sup>                                                            | 245 at 0.2 A g <sup>-1</sup><br>220 at 0.5 A g <sup>-1</sup><br>201 at 1 A g <sup>-1</sup><br>180 at 2 A g <sup>-1</sup><br>155 at 5 A g <sup>-1</sup><br>133 at 10 A g <sup>-1</sup><br>115 at 15 A g <sup>-1</sup><br>97 at 20 A g <sup>-1</sup> | 11   |
|--------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                                    | SIBs | 150 after 2000 cycles<br>at 1 A g <sup>-1</sup>                                                                                                                      | 202 at 0.5 A g <sup>-1</sup><br>152 at 1.5 A g <sup>-1</sup><br>123 at 3 A g <sup>-1</sup>                                                                                                                                                         |      |
| black Nb <sub>2</sub> O <sub>5</sub> -<br><i>x</i> @rGO nanosheets | PIBs | About 150 after 200<br>cycles at 0.2 A g <sup>-1</sup><br>About 120 after 500<br>cycles at 0.5 A g <sup>-1</sup><br>81 after 3500 cycles<br>at 1.5 A g <sup>-1</sup> | 111 at 1 A g <sup>-1</sup>                                                                                                                                                                                                                         | 12   |
| Nb <sub>2</sub> O <sub>5</sub><br>NRs/NMMCNF                       | SIBs | 126 after 10000<br>cycles at 2 A g <sup>-1</sup>                                                                                                                     | 275 at 0.02 A g <sup>-1</sup><br>101 at 4 A g <sup>-1</sup>                                                                                                                                                                                        | 13   |
| T-Nb2O5<br>nanowires                                               | PIBs | 104 after 400 cycles<br>at 0.4 A g <sup>-1</sup>                                                                                                                     | 152 at 0.1 A g <sup>-1</sup><br>127 at 0.2 A g <sup>-1</sup><br>104 at 0.4 A g <sup>-1</sup><br>90 at 0.6 A g <sup>-1</sup><br>81 at 0.8 A g <sup>-1</sup><br>74 at 1 A g <sup>-1</sup>                                                            | 14   |
| Nb2O5@C                                                            | SIBs | 255 after 150 cycles<br>at 1 A g <sup>-1</sup><br>160.7 after 1000<br>cycles at 10 A g <sup>-1</sup>                                                                 | 352.4 at 0.2 A g <sup>-1</sup><br>299 at 0.5 A g <sup>-1</sup><br>259 at 1 A g <sup>-1</sup><br>225 at 2 A g <sup>-1</sup><br>191 at 5 A g <sup>-1</sup><br>163 at 10 A g <sup>-1</sup>                                                            | This |
|                                                                    | PIBs | 143 after 500 cycles<br>at 0.5 A g <sup>-1</sup><br>118 after 1600<br>cycles at 3.5 A g <sup>-1</sup>                                                                | 237 at 0.1 A g <sup>-1</sup><br>175 at 0.2 A g <sup>-1</sup><br>140 at 0.5 A g <sup>-1</sup><br>114 at 1 A g <sup>-1</sup><br>91 at 2 A g <sup>-1</sup>                                                                                            | work |

|  | 70.5 at 3.5 A g <sup>-1</sup> |  |
|--|-------------------------------|--|
|  | 53 at 5 A g <sup>-1</sup>     |  |
|  |                               |  |

## Reference

- Z. Chen, W. Chen, H. Wang, Z. Xiao and F. Yu, *Nanoscale*, 2020, **12**, 18673-18681.
- L. Yan, G. Chen, S. Sarker, S. Richins, H. Wang, W. Xu, X. Rui and H. Luo, ACS Appl. Mater. Interfaces, 2016, 8, 22213-22219.
- H. Yang, R. Xu, Y. Gong, Y. Yao, L. Gu and Y. Yu, *Nano Energy*, 2018, 48, 448-455.
- L. Yang, Y.-E. Zhu, J. Sheng, F. Li, B. Tang, Y. Zhang and Z. Zhou, *Small*, 2017, 13, 1702588.
- Y. Wu, X. Fan, R. R. Gaddam, Q. Zhao, D. Yang, X. Sun, C. Wang and X. S. Zhao, *J. Power Sources*, 2018, 408, 82-90.
- F. Liu, X. Cheng, R. Xu, Y. Wu, Y. Jiang and Y. Yu, *Adv. Funct. Mater.*, 2018, 28, 1800394.
- Y. Wu, X. Fan, Y. Chen, R. R. Gaddam, F. Yu, C. Xiao, C. Lin, Q. Zhao, X. Sun,
   H. Wang, C. Liu, J. Li and X. S. Zhao, *J. Mater. Chem. A*, 2019, 7, 20813-20823.
- J. Ni, W. Wang, C. Wu, H. Liang, J. Maier, Y. Yu and L. Li, *Adv. Mater.*, 2017, 29, 1605607.
- Y. Li, H. Wang, L. Wang, Z. Mao, R. Wang, B. He, Y. Gong and X. Hu, *Small*, 2019, 15, 1804539.
- 10. L. Wang, X. Bi and S. Yang, J. Mater. Chem. A, 2018, 6, 6225-6232.
- Q. Deng, F. Chen, S. Liu, A. Bayaguud, Y. Feng, Z. Zhang, Y. Fu, Y. Yu and C. Zhu, *Adv. Funct. Mater.*, 2020, **30**, 1908665.
- 12. Z. Tong, R. Yang, S. Wu, D. Shen, T. Jiao, K. Zhang, W. Zhang and C.-S. Lee, *Small*, 2019, **15**, 1901272.

- 13. L. She, F. Zhang, C. Jia, L. Kang, Q. Li, X. He, J. Sun, Z. Lei and Z.-H. Liu, J. Colloid Interface Sci., 2020, **573**, 1-10.
- 14. N. Li, F. Zhang and Y. Tang, J. Mater. Chem. A, 2018, 6, 17889-17895.