Heterojunction interfacial promotion of fast and prolonged alkali-ion storage of urchin-like $\mathrm{Nb}_{2} \mathrm{O}_{5} @$ C nanospheres

Zhipeng Zhao ${ }^{\text {a,b }}$, Jingyun Cheng ${ }^{\text {a,b }}$, Kai Li ${ }^{\text {a,b }}$, Chuanqi Lia ${ }^{\text {a,b }}$, Shuo Zhang ${ }^{\mathrm{c}}$, Xiangdong Pei ${ }^{\text {d }}$, Zhulin Niu $^{\mathrm{a}, \mathrm{b} *}$, Zhongyi Liu ${ }^{\mathrm{a}, \mathrm{b}}$, Yongzhu Fu ${ }^{\mathrm{a}, \mathrm{b}}$ and Dan Lia ${ }^{\mathrm{a}, \mathrm{b} *}$
${ }^{\text {a }}$ College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
${ }^{\mathrm{b}}$ Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
${ }^{c}$ School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu Province, 730000, P. R. China
${ }^{d}$ Shanxi Supercomputing Center, Lvliang, Shanxi Province, 033000, P. R. China
*Corresponding authors
E-mail: danli@zzu.edu.cn; niuzhl@zzu.edu.cn

Fig. S1. The XRD pattern of the intermediate material obtained after the hydrothermal reaction, which is index to $\mathrm{Nb}_{2} \mathrm{O}_{5}$ (PDF card no. 300873).

Fig. S2. The Raman spectrum of the intermediate material obtained after the hydrothermal reaction.

Fig. S3. Survey XPS spectrum of $\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$.

Fig. S4. Survey XPS spectrum of the bare $\mathrm{Nb}_{2} \mathrm{O}_{5}$.

Fig. S5. High-resolution XPS spectrum of Nb 3 d in the bare $\mathrm{Nb}_{2} \mathrm{O}_{5}$.

Fig. S6. High-resolution XPS spectrum of O 1 s in the bare $\mathrm{Nb}_{2} \mathrm{O}_{5}$.

Fig. S7. Nitrogen sorption isotherms of the bare $\mathrm{Nb}_{2} \mathrm{O}_{5}$.

Fig. S8. a, b) SEM images and c, d) TEM images of the intermediate material obtained after the hydrothermal reaction.

Fig. S9. (a) TEM image, (b) the HAADF image, and (c) elemental mapping images of O and Nb in the bare $\mathrm{Nb}_{2} \mathrm{O}_{5}$.

Fig. S10. The EDS of the bare $\mathrm{Nb}_{2} \mathrm{O}_{5}$ sample.

Fig. S11. The crystal structure of $\mathrm{Nb}_{2} \mathrm{O}_{5}$.

Fig. S12. The FFT diffraction pattern of obtained samples: a) the intermediate, b) bare $\mathrm{Nb}_{2} \mathrm{O}_{5}$ and c) $\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$.

Fig. S13. The TG curve of $\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$.

Fig. S14. a) CV curves at various scan rates, b) relationship between the peak currents and scan rates in logarithmic format of the $\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$ composite in SIBs.

Fig. S15. Sodium-storage properties of the bare $\mathrm{Nb}_{2} \mathrm{O}_{5}$ in half-cells: a) CV curves at various scan rates, b) relationship between the peak currents (anodic and cathodic peaks) and scan rates in logarithmic format, c) contribution ratios of the capacitive and diffusion-controlled behaviors, d) capacitive contribution (shaded area) in a CV curve at $0.2 \mathrm{mV} \mathrm{s}^{-1}$.

Fig. S16. CV curves of bare $\mathrm{Nb}_{2} \mathrm{O}_{5}$ at the scan rate of $0.1 \mathrm{mV} \mathrm{s}^{-1}$ between 0.01 and 3 V in the PIBs.

Fig. S17. Relationship between the peak currents and scan rates in logarithmic format of the $\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$ composite in PIBs.

Fig. S18. E vs. t curve of the $\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$ composite for a single GITT during discharge process.

The sodium diffusion coefficient $\left({ }^{D}{ }_{N a}{ }^{+}\right)$can be calculated using the following equation:

$$
D=\frac{4}{\pi \tau}\left(\frac{m V_{m}}{M_{A} S}\right)^{2}\left(\frac{\Delta E_{S}}{\Delta E_{\tau}}\right)^{2}
$$

Where $\tau(\mathrm{s}), m(\mathrm{~g}), V_{m}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right), M_{A}\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ and $\mathrm{S}\left(\mathrm{cm}^{2}\right)$ are constant current pulse time, the active mass of electrode materials, molar volume of the active material, molecular weight and the effective surface area, respectively. And $\Delta E_{s}(\mathrm{~V})$ presents the difference in the steady state potential of the step at plateau, while $\Delta E_{\tau}(\mathrm{V})$ is the total voltage change during a constant current pulse time excluding the $i R$ drop as depicted in Fig. S18.

Fig. S19. The GITT curves and ${ }^{D}{ }_{N a}+$ values at different discharge/charge states at the second cycle of bare $\mathrm{Nb}_{2} \mathrm{O}_{5}$ in sodium ion battery.

Fig. S20. The GITT curves and ${ }^{D}{ }_{K}$ values at different discharge/charge states at the second cycle of bare $\mathrm{Nb}_{2} \mathrm{O}_{5}$ in potassium ion battery.

It can be found that the ${ }^{D}{ }^{+}$values of $\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$ at charge/discharge process are higher than that of bare $\mathrm{Nb}_{2} \mathrm{O}_{5}$ whether in SIBs system or PIBs system, indicating the promoted ionic reaction kinetics stemmed from the rich high chemical activity of pyridinic N .

Fig. S21. Galvanostatic discharge/charge profiles of the different cycles of $\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$ at the current density of $3.5 \mathrm{~A} \mathrm{~g}^{-1}$ in PIBs.

Table S1. The fitted values of R_{s} and $R_{c t}+R_{f}$ at different voltage within the first cycle of $\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$ in SIBs.

Voltage	$R_{s}(\mathbf{\Omega})$	$R_{c t}+R_{f(\mathbf{\Omega})}$
OCV	3.56	12.41
Discharge to $\mathbf{1 . 5} \mathbf{~ V}$	3.48	12.87
Discharge to $\mathbf{1 . 0} \mathbf{~ V}$	3.49	12.93
Discharge to 0.5 V	3.47	12.54
Charge to 0.01 V	3.56	10.89
Charge to 1 V	3.51	8.92
Charge to $\mathbf{2 . 5} \mathbf{~ V}$	3.46	10.0
Charge to 3.0 V	3.34	9.5

Table S2. The fitted values of R_{s} and $R_{c t}+R_{f}$ at different voltage within the first cycle of $\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$ in PIBs.

Voltage	$R_{s}(\mathbf{\Omega})$	$R_{c t}+R_{f(\mathbf{\Omega})}$
OCV	0.2	994.9
Discharge to $\mathbf{1 . 5} \mathbf{V}$	5.2	995.9
Discharge to 1.0 V	6.1	792.0
Discharge to 0.5 V	7.4	694.8
Charge to 0.01 V	1.2	566.2
Charge to 1 V	2.1	517.9
Charge to 2.5 V	0.1	495.2
Charge to 3.0 V	0.2	500.9

Fig. S22. The Nyquist plots of $\mathrm{Nb}_{2} \mathrm{O}_{5}$ and $\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$ before cycling in SIBs.

Table S3. The fitted values of solution resistance $\left(R_{s}\right)$ and the sum of charge transfer resistance and electrolyte/electrode interfacial resistance $\left(R_{c t}+R_{f}\right)$ of $\mathrm{Nb}_{2} \mathrm{O}_{5}$ and $\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$ before cycling in SIBs.

Sample	$R_{s(\boldsymbol{\Omega})}$	$R_{c t+} R_{f(\mathbf{\Omega})}$
$\mathrm{Nb}_{2} \mathrm{O}_{5}$	6.11	27.76
$\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$	4.7	14.4

Fig. S23. The Nyquist plots of $\mathrm{Nb}_{2} \mathrm{O}_{5}$ and $\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$ before cycling in PIBs.

Table S4. The fitted values of R_{s} and $R_{c t}+R_{f}$ of $\mathrm{Nb}_{2} \mathrm{O}_{5}$ and $\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$ before cycling in PIBs.

Sample	$R_{s}(\boldsymbol{\Omega})$	$R_{c t+} R_{f}(\boldsymbol{\Omega})$
$\mathrm{Nb}_{2} \mathrm{O}_{5}$	9.2	1393.5
$\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$	6.7	828.1

Fig. S24. (a, b) SEM images of $\mathrm{Nb}_{2} \mathrm{O}_{5} @$ C tested after 200 cycles at a current density of $1 \mathrm{~A} \mathrm{~g}^{-1}$ in SIBs.

Fig. S25. (a, b) SEM images of $\mathrm{Nb}_{2} \mathrm{O}_{5} @$ C tested after 500 cycles at a current density $0.5 \mathrm{~A} \mathrm{~g}^{-1}$ in PIBs.

Fig. S26. The DOS of C, O and Nb .

Fig. S27. The cycling performance of the commercial $\mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ at $0.1 \mathrm{Ag}^{-1}$.

Fig. S28. (a) Rate capability and (b) cycling performance at $1 \mathrm{~A} \mathrm{~g}^{-1}$ of the $\mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{3} / \mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$ full cell in the voltage window of 1-3.5 V.

Fig. S28a displays the rate performance of the $\mathrm{Na}_{3} \mathrm{~V}_{2}\left(\mathrm{PO}_{4}\right)_{3} / / \mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$ full cell in a voltage window of $1-3.5 \mathrm{~V}$, showing the capacities of $104.8,82.5,69.5,60.4$, 53.1 , and $45.8 \mathrm{~mA} \mathrm{~h} \mathrm{~g}^{-1}$ at $0.1,0.2,0.5,1,2$ and $5 \mathrm{~A} \mathrm{~g}^{-1}$, respectively. And the capacity bounced back to $73.8 \mathrm{~mA} \mathrm{~h} \mathrm{~g}^{-1}$ once the current density recovered to 100 $\mathrm{mA} \mathrm{g}{ }^{-1}$. Fig. S28b presents the long-term cycling performance of the full cell, which maintained a capacity of $56.8 \mathrm{~mA} \mathrm{~h} \mathrm{~g}^{-1}$ at $1 \mathrm{~A} \mathrm{~g}^{-1}$ over 200 cycles with a Coulombic efficiency closed to 100%.

Table S5. Comparison of the rate capability and cycling performance of $\mathrm{Nb}_{2} \mathrm{O}_{5}$-based composites employed as active material for sodium/potassium-ion electrodes.

Materials		Cycling performance $\left(m A h g^{-1}\right)$	Rate Capability $\left(m A h g^{-1}\right)$	Ref.
600-Nb $\mathbf{2} \mathrm{O}_{5} @ \mathrm{NC-2}$	SIBs	278 after 100 cycles at $0.1 \mathrm{~A} \mathrm{~g}^{-1}$ 128 after 3000 cycles at $5 \mathrm{~A} \mathrm{~g}^{-1}$ 95.9 after 3000 cycles at $10 \mathrm{~A} \mathrm{~g}^{-1}$	$\begin{aligned} & 280 \text { at } 0.1 \mathrm{~A} \mathrm{~g}^{-1} \\ & 250 \text { at } 0.2 \mathrm{~A} \mathrm{~g} \mathrm{~g}^{-1} \\ & 225 \text { at } 0.5 \mathrm{~A} \mathrm{~g}^{-1} \\ & 200 \text { at } 1 \mathrm{~A} \mathrm{~g}^{-1} \\ & 166 \text { at } 2 \mathrm{~A} \mathrm{~g}^{-1} \\ & 130 \text { at } 5 \mathrm{~A} \mathrm{~g}^{-1} \\ & 98 \text { at } 10 \mathrm{~A} \mathrm{~g}^{-1} \end{aligned}$	1
$\mathrm{Nb}_{2} \mathrm{O}_{5} \mathbf{N C s} / \mathbf{r G O}$	SIBs	181 after 100 cycles at $0.2 \mathrm{~A} \mathrm{~g}^{-1}$	$\begin{aligned} & 195 \text { at } 0.5 \mathrm{~A} \mathrm{~g}^{-1} \\ & 170 \text { at } 1 \mathrm{~A} \mathrm{~g}^{-1} \\ & 143 \text { at } 2 \mathrm{~A} \mathrm{~g}^{-1} \\ & 115 \text { at } 5 \mathrm{~A} \mathrm{~g}^{-1} \\ & 85 \text { at } 10 \mathrm{~A} \mathrm{~g}^{-1} \end{aligned}$	2
Nb $\mathbf{2}_{\mathbf{O}} \mathbf{5}^{\text {@ }}$ 3D PRS	SIBs	130 after 7500 cycles at 10 C	$\begin{aligned} & 302 \text { at } 0.5 \mathrm{C} \\ & 265 \text { at } 1 \mathrm{C} \\ & 240 \text { at } 2 \mathrm{C} \\ & 225 \text { at } 3 \mathrm{C} \\ & 202 \text { at } 5 \mathrm{C} \\ & 176 \text { at } 8 \mathrm{C} \\ & 158 \text { at } 10 \mathrm{C} \\ & 140 \text { at } 15 \mathrm{C} \\ & 126 \text { at } 20 \mathrm{C} \\ & 108 \text { at } 25 \mathrm{C} \end{aligned}$	3
$\begin{gathered} \mathrm{T}-\mathrm{Nb}_{2} \mathrm{O}_{5} / \\ \mathrm{CNF} \end{gathered}$	SIBs	150 after 5000 cycles at $1 \mathrm{Ag}^{-1}$	$\begin{aligned} & 229 \text { at } 0.1 \mathrm{~A} \mathrm{~g}^{-1} \\ & 189.8 \text { at } 0.2 \mathrm{~A} \mathrm{~g}^{-1} \\ & 162.9 \text { at } 0.5 \mathrm{~A} \mathrm{~g}^{-1} \\ & 145.7 \text { at } 1 \mathrm{~A} \mathrm{~g}^{-1} \\ & 129.4 \text { at } 2 \mathrm{~A} \mathrm{~g}^{-1} \\ & 113.3 \text { at } 4 \mathrm{~A} \mathrm{~g}^{-1} \\ & 97 \text { at } 8 \mathrm{~A} \mathrm{~g}^{-1} \end{aligned}$	4

$\mathrm{m}-\mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{C}$	SIBs	252 after 200 cycles at $0.05 \mathrm{~A} \mathrm{~g}^{-1}$ 125 after 1000 cycles at $1 \mathrm{Ag}^{-1}$	$\begin{aligned} & 252 \text { at } 0.05 \mathrm{~A} \mathrm{~g}^{-1} \\ & 123 \text { at } 1 \mathrm{~A} \mathrm{~g} \mathrm{~g}^{-1} \\ & 80 \text { at } 2 \mathrm{~A} \mathrm{~g}^{-1} \end{aligned}$	
$\begin{gathered} \mathrm{S}-\mathrm{Nb}_{2} \mathrm{O}_{5} \text { HNS@S- } \\ \text { rGO } \end{gathered}$	SIBs	215 after 100 cycles at 0.5 C 140 after 1000 cycles at 5 C 100 after 3000 cycles at 20 C	$\begin{aligned} & 290 \text { at } 0.25 \mathrm{C} \\ & 260 \text { at } 0.5 \mathrm{C} \\ & 230 \text { at } 1 \mathrm{C} \\ & 180 \text { at } 2.5 \mathrm{C} \\ & 155 \text { at } 5 \mathrm{C} \\ & 125 \text { at } 10 \mathrm{C} \\ & 100 \text { at } 20 \mathrm{C} \end{aligned}$	6
$\begin{gathered} \mathrm{T}-\mathrm{Nb}_{2} \mathrm{O}_{5-\mathrm{x}} \mathrm{~F}_{\mathbf{y}} \propto \mathrm{C}- \\ \mathrm{NBs} \end{gathered}$	SIBs	239 after 100 cycles at $0.05 \mathrm{~A} \mathrm{~g}^{-1}$ 130 after 10000 cycles at $1 \mathrm{~A} \mathrm{~g}^{-1}$	$\begin{aligned} & 318 \text { at } 0.025 \mathrm{~A} \mathrm{~g}^{-1} \\ & 292.2 \text { at } 0.05 \mathrm{~A} \mathrm{~g}^{-1} \\ & 264 \text { at } 0.1 \mathrm{~A} \mathrm{~g} \mathrm{~g}^{-1} \\ & 230 \text { at } 0.2 \mathrm{~A} \mathrm{~g}^{-1} \\ & 194 \text { at } 0.4 \mathrm{~A} \mathrm{~g}^{-1} \\ & 178 \text { at } 0.8 \mathrm{~A} \mathrm{~g}^{-1} \\ & 165 \text { at } 1 \mathrm{~A} \mathrm{~g}^{-1} \\ & 141 \text { at } 2 \mathrm{~A} \mathrm{~g}^{-1} \end{aligned}$	7
$\mathrm{a}-\mathrm{H}-\mathrm{Nb}_{2} \mathrm{O}_{5}$	SIBs	133 after 1000 cycles at 2 C 109 after 3000 cycles at 5 C	$\begin{aligned} & 185 \text { at } 0.5 \mathrm{C} \\ & 181 \text { at } 1 \mathrm{C} \\ & 159 \text { at } 2 \mathrm{C} \\ & 117 \text { at } 5 \mathrm{C} \\ & 84 \text { at } 10 \mathrm{C} \end{aligned}$	8
$\mathrm{m}-\mathrm{Nb}_{2} \mathrm{O}_{5} / \mathrm{CNF}$	SIBs	190.6 after 2500 cycles at 10 C 175.8 after 3000 cycles at 5 C	$\begin{aligned} & 286.8 \text { at } 0.5 \mathrm{C} \\ & 282.2 \text { at } 1 \mathrm{C} \\ & 260.1 \text { at } 2.5 \mathrm{C} \\ & 243.9 \text { at } 5 \mathrm{C} \\ & 224 \text { at } 10 \mathrm{C} \\ & 196.4 \text { at } 25 \mathrm{C} \\ & 185.6 \text { at } 50 \mathrm{C} \\ & 178.6 \text { at } 100 \mathrm{C} \\ & 171.4 \text { at } 150 \mathrm{C} \end{aligned}$	9
$\mathbf{S b}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ nanomeshes	$\begin{gathered} \text { SIBs } \\ (0.01-2 \\ \mathrm{V}) \end{gathered}$	190 after 500 cycles at $5 \mathrm{Ag}^{-1}$	270 at $2 \mathrm{~A} \mathrm{~g}^{-1}$	10

$\mathbf{N b}_{2} \mathbf{O}_{5} @ \mathbf{M o S}_{2} @ \mathbf{C}$ CNFs	SIBs	About 190 after 1000 cycles at $1 \mathrm{~A} \mathrm{~g}^{-1}$ 127 after 20000 cycles at $5 \mathrm{~A} \mathrm{~g}^{-1}$	$\begin{aligned} & 245 \text { at } 0.2 \mathrm{~A} \mathrm{~g}^{-1} \\ & 220 \text { at } 0.5 \mathrm{~A} \mathrm{~g}^{-1} \\ & 201 \text { at } 1 \mathrm{~A} \mathrm{~g}^{-1} \\ & 180 \text { at } 2 \mathrm{~A} \mathrm{~g} \mathrm{~g}^{-1} \\ & 155 \text { at } 5 \mathrm{~A} \mathrm{~g} \mathrm{~g}^{-1} \\ & 133 \text { at } 10 \mathrm{~A} \mathrm{~g}^{-1} \\ & 115 \text { at } 15 \mathrm{~A} \mathrm{~g}^{-1} \\ & 97 \text { at } 20 \mathrm{~A} \mathrm{~g}^{-1} \end{aligned}$	11
	SIBs	150 after 2000 cycles at $1 \mathrm{Ag}^{-1}$	$\begin{aligned} & 202 \text { at } 0.5 \mathrm{~A} \mathrm{~g}^{-1} \\ & 152 \text { at } 1.5 \mathrm{~A} \mathrm{~g}^{-1} \\ & 123 \text { at } 3 \mathrm{~A} \mathrm{~g}^{-1} \end{aligned}$	
black $\mathrm{Nb}_{2} \mathrm{O}_{5}{ }^{-}$ $x @ r G O$ nanosheets	PIBs	About 150 after 200 cycles at $0.2 \mathrm{~A} \mathrm{~g}^{-1}$ About 120 after 500 cycles at $0.5 \mathrm{~A} \mathrm{~g}^{-1}$ 81 after 3500 cycles at $1.5 \mathrm{~A} \mathrm{~g}^{-1}$	111 at $1 \mathrm{~A} \mathrm{~g}^{-1}$	12
$\begin{gathered} \mathrm{Nb}_{2} \mathrm{O}_{5} \\ \mathbf{N R s} / \mathbf{N M M C N F} \end{gathered}$	SIBs	126 after 10000 cycles at $2 \mathrm{Ag}^{-1}$	$\begin{aligned} & 275 \text { at } 0.02 \mathrm{~A} \mathrm{~g}^{-1} \\ & 101 \text { at } 4 \mathrm{~A} \mathrm{~g}^{-1} \end{aligned}$	13
$\mathrm{T}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ nanowires	PIBs	104 after 400 cycles at $0.4 \mathrm{~A} \mathrm{~g}^{-1}$	$\begin{aligned} & 152 \text { at } 0.1 \mathrm{~A} \mathrm{~g}^{-1} \\ & 127 \text { at } 0.2 \mathrm{~A} \mathrm{~g}^{-1} \\ & 104 \text { at } 0.4 \mathrm{~A} \mathrm{~g}^{-1} \\ & 90 \text { at } 0.6 \mathrm{~A} \mathrm{~g}^{-1} \\ & 81 \text { at } 0.8 \mathrm{~A} \mathrm{~g}^{-1} \\ & 74 \text { at } 1 \mathrm{~A} \mathrm{~g}^{-1} \end{aligned}$	14
$\mathrm{Nb}_{2} \mathrm{O}_{5} @ \mathrm{C}$	SIBs	255 after 150 cycles at $1 \mathbf{A g}^{-1}$ 160.7 after 1000 cycles at $10 \mathrm{~A} \mathrm{~g}^{-1}$	352.4 at $0.2 \mathrm{~A} \mathrm{~g}^{-1}$ 299 at $0.5 \mathrm{~A} \mathrm{~g} \mathrm{~g}^{-1}$ 259 at $1 \mathrm{~A} \mathrm{~g}^{-1}$ 225 at $2 \mathrm{~A} \mathrm{~g}^{-1}$ 191 at $5 \mathrm{~A} \mathrm{~g}^{-1}$ 163 at $10 \mathrm{~A} \mathrm{~g}^{-1}$	This work
	PIBs	143 after 500 cycles at $0.5 \mathrm{~A} \mathrm{~g}^{-1}$ 118 after 1600 cycles at $3.5 \mathrm{~A} \mathrm{~g}^{-1}$	$\begin{aligned} & 237 \text { at } 0.1 \mathrm{~A} \mathrm{~g}^{-1} \\ & 175 \text { at } 0.2 \mathrm{~A} \mathrm{~g}^{-1} \\ & 140 \text { at } 0.5 \mathrm{~A} \mathrm{~g} \mathrm{~g}^{-1} \\ & 114 \text { at } 1 \mathrm{~A} \mathrm{~g}^{-1} \\ & 91 \text { at } 2 \mathrm{~A} \mathrm{~g}^{-1} \end{aligned}$	

Reference

1. Z. Chen, W. Chen, H. Wang, Z. Xiao and F. Yu, Nanoscale, 2020, 12, 1867318681.
2. L. Yan, G. Chen, S. Sarker, S. Richins, H. Wang, W. Xu, X. Rui and H. Luo, ACS Appl. Mater. Interfaces, 2016, 8, 22213-22219.
3. H. Yang, R. Xu, Y. Gong, Y. Yao, L. Gu and Y. Yu, Nano Energy, 2018, 48, 448-455.
4. L. Yang, Y.-E. Zhu, J. Sheng, F. Li, B. Tang, Y. Zhang and Z. Zhou, Small, 2017, 13, 1702588.
5. Y. Wu, X. Fan, R. R. Gaddam, Q. Zhao, D. Yang, X. Sun, C. Wang and X. S. Zhao, J. Power Sources, 2018, 408, 82-90.
6. F. Liu, X. Cheng, R. Xu, Y. Wu, Y. Jiang and Y. Yu, Adv. Funct. Mater., 2018, 28, 1800394.
7. Y. Wu, X. Fan, Y. Chen, R. R. Gaddam, F. Yu, C. Xiao, C. Lin, Q. Zhao, X. Sun, H. Wang, C. Liu, J. Li and X. S. Zhao, J. Mater. Chem. A, 2019, 7, 2081320823.
8. J. Ni, W. Wang, C. Wu, H. Liang, J. Maier, Y. Yu and L. Li, Adv. Mater., 2017, 29, 1605607.
9. Y. Li, H. Wang, L. Wang, Z. Mao, R. Wang, B. He, Y. Gong and X. Hu, Small, 2019, 15, 1804539.
10. L. Wang, X. Bi and S. Yang, J. Mater. Chem. A, 2018, 6, 6225-6232.
11. Q. Deng, F. Chen, S. Liu, A. Bayaguud, Y. Feng, Z. Zhang, Y. Fu, Y. Yu and C. Zhu, Adv. Funct. Mater., 2020, 30, 1908665.
12. Z. Tong, R. Yang, S. Wu, D. Shen, T. Jiao, K. Zhang, W. Zhang and C.-S. Lee, Small, 2019, 15, 1901272.
13. L. She, F. Zhang, C. Jia, L. Kang, Q. Li, X. He, J. Sun, Z. Lei and Z.-H. Liu, J. Colloid Interface Sci., 2020, 573, 1-10.
14. N. Li, F. Zhang and Y. Tang, J. Mater. Chem. A, 2018, 6, 17889-17895.
