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Figure S1. Photograph of GO dispersion and TEM image of GO nanosheets.

Figure S2. The XRD patterns of GO and RGO.
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Figure S3. The Raman spectra of GO and RGO. The intensity ratio of ID/IG increased from 0.92 of GO to 1.75 of 

RGO, which was ascribed to the removal of oxygen-containing group of GO and indicated the successful reduction 

of GO into RGO.

Figure S4. (A) The FTIR spectra of GO, Gluten, Glycerol, GO/Gluten, GO/Gluten/Glycerol, and 

RGO/Gluten/Glycerol. (B-C) Magnified FT-IR spectra in the range of (B) 1500-1800 cm-1 and (C) 2500-3700 cm-1. 

(D-E) The fitted FT-IR spectra of GO/Gluten and GO/Gluten/Glycerol.
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Figure S5. (A) The low-magnification SEM image of GGOH0.2. (B-F) The conductivities of GGOH0.2 at different 

areas indicating the uniform dispersion of RGO in organohydrogels.

Figure S6. (A-B) The photographs of original, twisting, stretching, and conductive (A) gluten/carbon 

nanotubes/glycerol and (B) gluten/silver nanowires/glycerol composite organohydrogels.
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Figure S7. The storage modulus and loss modulus versus frequency for the GGOHx organohydrogels with different 

RGO concentrations.
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Figure S8. The photograph and SEM image of pure gluten derived from wheat flour dough.

Figure S9. (A-B) Schematic illustration and photograph of the lap-shear measurement.

Figure S10. (A) Photographs of GGOH0.2 adhered on human skin indicating the tight and comfortable adhesion. (B) 

Photographs of GGOH0.2 adhered on human skin after 24 h indicating the stable and comfortable adhesion.
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Figure S11. The photographs indicating tight adhesion and anti-fatigue capabilities of GGOH0.2 under different human 

joints bending cycles. 

Figure S12. The lap-shear strengths of GGOHx with different RGO concentrations.



8

Figure S13. The lap-shear strengths of GGOH0.2 with various water contents.

Figure S14. DSC curves of GGOH0.2 (with glycerol) and GGH0.2 (without glycerol).
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Figure S15. The conductivities of GGOH0.2 versus temperature ranging from -60 °C to 60 °C.

Figure S16. The storage modulus and loss modulus of GGOH0.2 under -20 °C and 25 °C.
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Figure S17. The conductivities of GGOH0.2 before and after storing at 25°C and a relative humidity of ~65 % for 30 

days.

Figure S18. (A-B) Circuits consisting of a green LED indicator and GGOH0.2 or GGH0.2 that stored at 25°C and a 

relative humidity of ~65 % for 30 days. 
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Figure S19. The current variations of GGOHx at a strain of 80 % with different RGO concentrations.

Figure S20. (A-B) Multi-cycle tests of relative current variation of the assembled GGOH0.2 strain sensors under strains 

of 50 %, 100 %, and 200 %.
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Figure S21. Resistance variations of GGOH0.2 versus strains under-20 °C and 25 °C.

Figure S22. (A-B) Representative curves of lap-shear strengths versus strain for GGOH0.2 with different substrates 

(glass, rubber, paper, metal, skin, wood, cloth, and plastic) under -20 °C.
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Figure S23. Cyclic tests on the detection of finger bending at a bending angle of 90° under -20 °C.

Figure S24. Circuits consisting of a green LED indicator and original GGOH0.2, cut GGOH0.2, and self-recovered 

GGOH0.2. The corresponding schematic diagrams of these circuits also provided.
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Figure S25. The changes of current variations at a strain of 80 % (A) and conductivities (B) of GGOH0.2 after different 

self-recovery cycles.

Figure S26. Typical stress-strain curves of GGOH0.2 under different cutting-healing cycles.
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Figure S27. The detection of wrist (A) and finger (B) bending using GGOH0.2 after 100 cutting-recovery cycles.

Figure S28. Cell viability of HepG2 cells after 12 h, 24 h, 36 h incubation with GGOH0.2.
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Figure S29. Photographs of the degradation of GGOH0.2 immersed in KOH (1mol/L) solution at different times.

Figure S30. Photographs of the degradation of GGOH0.2 immersed in neutral proteinase (5 mg/mL in PBS) solution 

at different times.
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Table S1. The comparison between GGOHx and some other biomaterials-based hydrogels for the lap-shear strengths 

and toughness.
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