Supporting Information

Tailoring high-temperature stability and electrical conductivity of high entropy lanthanum manganite for solid oxide fuel cell cathodes

Yinchun Shi ^a, Na Ni ^{*abc}, Qi Ding ^d and Xiaofeng Zhao ^a

^aSchool of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

^bKey Lab of Education Ministry for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China ^cGas Turbine Research Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. E-mail: na.ni@sjtu.edu.cn ^dSchool of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

 Table S1 Average particle/ grain sizes and corresponding calcination/ sintering parameters of single-phase

 HEALMO and LSM82 powders and pellets. The calcination temperature was chosen as the minimum temperature

 at which a single-phase structure can be obtained after the precursor was calcinated for 2 h.

	Powe	der	Ре	llet
Composition	Average particle	Calcination	Average grain	Sintering
	size (nm)	parameter	size (µm)	parameter
HEALMO-1	520	1200°C for 2 h	3.85	1400°C for 10 h
HEALMO-2	360	1200 C for 2 h	4.28	1400°C for 10 h
HEALMO-3	220	1100 C for 2 h	1.75	1300°C for 10 h
LSM82	660	Unknown	10.74	1400°C for 5 h

Fig. S1 Schematic diagram of electrical conductivity measurement via Seebeck coefficient/ electrical resistance measuring system, in which the current electrodes and thermocouples are made of platinum-rhodium alloy. The two parallel thermocouples are used to measure the voltage drop, and the corresponding parallel distance is 6 mm. ADVANCE RIKO, Inc., https://advance-riko.com/en/products/zem-3/, (accessed September 2021).

Fig. S2 XRD patterns of non-single-phase HEALMOs:

(a) HEALMO-4 and (b) HEALMO-5.

Fig. S3 Elemental distribution in non-single-phase HEALMOs:

(a) HEALMO-4 and (b) HEALMO-5.

Composition	Relative acidity	Composition	Relative acidity
HEALMO-1	1.252	Sm ₂ O ₃	1.274
HEALMO-2	0.995	Nd ₂ O ₃	1.139
HEALMO-3	1.069	CaO	1.099
HEALMO-4	0.987	Pr ₂ O ₃	1.064
HEALMO-5	1.002	SrO	0.978
Y ₂ O ₃	1.591	BaO	0.938
Gd ₂ O ₃	1.402	La ₂ O ₃	0.855

Table S2 Average relative acidity of A site oxides in HEALMOs, and relative acidity of oxides related to

HEALMOs.

A site cation	Coordination number ^{1, 2}	Ionic radii (Å) ^{1,2}
La ³⁺	XII	1.36
Pr ³⁺	XII	1.32
Nd^{3+}	XII	1.27
Ca^{2+}	XII	1.34
Sr^{2+}	XII	1.44
Ba^{2+}	XII	1.61

Table S3 Oxidation state, coordination number, ionic radii of A site cations, and prototype structure of the

corresponding manganite associated with HEALMO-4 and HEALMO-5.

nd high entrony	nerovskite oxides. To facilitate the comparison, Goldschmidt's tolerance factor (1) and cation size
and mgn entropy j	perovskie oxides. To facilitate the comparison, Goldseminist's toterance factor (1) and cation size
difference (δ) of	reported materials from the literature were re-calculated according to Equation (3) and (4) in the
	manuscript using the ion radius values in Table S5.

			Goldschmidt's	Cation size	
Composition	Crystal structure	SG	tolerance factor	difference	Reference
			<i>(t)</i>	(δ)	
(La _{0.9} Ca _{0.1})MnO ₃	Orthorhombic	-	0.969	0.44%	3
(La _{0.6} Ca _{0.4})MnO ₃	Orthorhombic	Pbnm	0.967	0.72%	4
$(La_{0.9}Sr_{0.1})MnO_3$	Orthorhombic	Pbnm	0.972	1.75%	5
$(La_{0.9}Ba_{0.1})MnO_3$	Orthorhombic	Pnma	0.978	5.42%	6
(La _{0.8} Ca _{0.2})MnO ₃	Orthorhombic	Pnma	0.968	0.59%	-
(La _{0.7} Ca _{0.3})MnO ₃	Orthorhombic	Pnma	0.967	0.68%	1
(La _{0.6} Sr _{0.4})MnO ₃	Orthorhombic	-	0.981	2.82%	
(La _{0.5} Sr _{0.5})MnO ₃	Orthorhombic	-	0.984	2.86%	
$(Pr_{0.9}Sr_{0.1})MnO_3$	Orthorhombic	-	0.960	2.70%	
$(Pr_{0.8}Sr_{0.2})MnO_3$	Orthorhombic	-	0.964	3.57%	
$(Pr_{0.7}Sr_{0.3})MnO_3$	Orthorhombic	-	0.968	4.06%	
$(Pr_{0.6}Sr_{0.4})MnO_3$	Orthorhombic	-	0.973	4.30%	
(Pr _{0.5} Sr _{0.5})MnO ₃	Orthorhombic	-	0.977	4.35%	
$(Nd_{0.9}Sr_{0.1})MnO_3$	Orthorhombic	-	0.944	3.96%	
$(Nd_{0.8}Sr_{0.2})MnO_3$	Orthorhombic	-	0.950	5.21%	
(Nd _{0.7} Sr _{0.3})MnO ₃	Orthorhombic	-	0.956	5.90%	
$(Nd_{0.6}Sr_{0.4})MnO_3$	Orthorhombic	-	0.962	6.22%	0
$(Nd_{0.5}Sr_{0.5})MnO_3$	Orthorhombic	-	0.968	6.27%	8
$(Sm_{0.9}Sr_{0.1})MnO_3$	Orthorhombic	-	0.935	4.76%	
$(\mathrm{Sm}_{0.8}\mathrm{Sr}_{0.2})\mathrm{MnO}_3$	Orthorhombic	-	0.942	6.25%	
$(Sm_{0.7}Sr_{0.3})MnO_3$	Orthorhombic	-	0.948	7.05%	
$(Sm_{0.6}Sr_{0.4})MnO_3$	Orthorhombic	-	0.955	7.42%	
$(Sm_{0.5}Sr_{0.5})MnO_3$	Orthorhombic	-	0.963	7.46%	
$(Gd_{0.9}Sr_{0.1})MnO_3$	Orthorhombic	-	0.944	3.96%	
$(Gd_{0.8}Sr_{0.2})MnO_3$	Orthorhombic	-	0.950	5.21%	
(Gd _{0.7} Sr _{0.3})MnO ₃	Orthorhombic	-	0.956	5.90%	
$(Gd_{0.6}Sr_{0.4})MnO_3$	Orthorhombic	-	0.962	6.22%	
$(Gd_{0.5}Sr_{0.5})MnO_3$	Orthorhombic	-	0.968	6.27%	
(Gd _{0.5} Sr _{0.5})CoO ₃	Orthorhombic	Pnma	0.985	6.27%	
$(Nd_{0.5}Ba_{0.5})CoO_3$	Orthorhombic	Pmmm	1.016	11.81%	
$(Gd_{0.5}Ba_{0.5})CoO_3$	Orthorhombic	Pmmm	1.016	11.81%	
(La _{0.5} Sr _{0.5})CoO ₃	Rhombohedral	$R\overline{3}_{c}$	1.001	2.86%	9
(Pr _{0.5} Sr _{0.5})CoO ₃	Rhombohedral	$R\overline{3}_{c}$	0.994	4.35%	
$(Nd_{0.5}Sr_{0.5})CoO_3$	Rhombohedral	$R^{\overline{3}}c$	0.985	6.27%	
(La _{0.5} Ba _{0.5})CoO ₃	Rhombohedral	$R^{3}c$	1.032	8.42%	
(La _{0.8} Ba _{0.2})MnO ₃	Rhombohedral	$R\bar{3}c$	0.987	7.09%	

(La _{0.7} Ba _{0.3})MnO ₃	Rhombohedral	$R^{3}c$	0.996	7.98%	
$(La_{0.7}Sr_{0.3})MnO_3$	Rhombohedral	$R^{3}c$	0.978	2.65%	7
(Sr _{0.9} Ho _{0.1})CoO ₃	Cubic	$Pm^{3}m$	1.008	4.44%	10
(Sm _{0.4} Sr _{0.6})CoO ₃	Cubic	-	0.987	7.20%	
(Sm _{0.3} Sr _{0.7})CoO ₃	Cubic	-	0.994	6.64%	
$(Sm_{0.2}Sr_{0.8})CoO_3$	Cubic	-	1.001	5.71%	
(Sm _{0.1} Sr _{0.9})CoO ₃	Cubic	-	1.008	4.23%	11
(Dy _{0.3} Sr _{0.7})CoO ₃	Cubic	-	0.994	6.64%	
(Dy _{0.2} Sr _{0.8})CoO ₃	Cubic	-	1.001	5.71%	
(Dy _{0.1} Sr _{0.9})CoO ₃	Cubic	-	1.008	4.23%	
$(La_{0.2}Nd_{0.2}Sm_{0.2}Y_{0.2}Gd_{0.2})CoO_3$	Orthorhombic	Pbnm	0.945	7.49%	
$(La_{0.2}Nd_{0.2}Sm_{0.2}Y_{0.2}Gd_{0.2})CrO_3$	Orthorhombic	Pbnm	0.927	7.49%	
$(La_{0.2}Nd_{0.2}Sm_{0.2}Y_{0.2}Gd_{0.2})FeO_3$	Orthorhombic	Pbnm	0.936	7.49%	
$La(Co_{0.2}Cr_{0.2}Fe_{0.2}Mn_{0.2}Ni_{0.2})O_3$	Orthorhombic	Pbnm	0.978	2.63%	10
$Gd(Co_{0.2}Cr_{0.2}Fe_{0.2}Mn_{0.2}Ni_{0.2})O_3$	Orthorhombic	Pbnm	0.946	2.63%	12
$Sm(Co_{0.2}Cr_{0.2}Fe_{0.2}Mn_{0.2}Ni_{0.2})O_3$	Orthorhombic	Pbnm	0.935	2.63%	
$Nd(Co_{0.2}Cr_{0.2}Fe_{0.2}Mn_{0.2}Ni_{0.2})O_3$	Orthorhombic	Pbnm	0.946	2.63%	
$Y(Co_{0.2}Cr_{0.2}Fe_{0.2}Mn_{0.2}Ni_{0.2})O_3$	Orthorhombic	Pbnm	0.880	2.63%	
$(La_{0.2}Pr_{0.2}Nd_{0.2}Sm_{0.2}Sr_{0.2})MnO_{3-\delta}$	Orthorhombic	Pnma	0.958	5.30%	13
$La(Mn_{0.2}Fe_{0.2}Co_{0.2}Ni_{0.2}Cu_{0.2})O_{3\text{-}\delta}$	Hexagonal	RЗcH	0.966	9.15%	14
Ba(Zr _{0.2} Ti _{0.2} Sn _{0.2} Hf _{0.2} Y _{0.2})O ₃	Cubic	$Pm^{3}m$	1.001	13.30%	
$Ba(Zr_{0.2}Ti_{0.2}Sn_{0.2}Hf_{0.2}Nb_{0.2})O_3$	Cubic	$Pm^{3}m$	1.026	6.50%	15
$Ba(Zr_{0.2}Ti_{0.2}Sn_{0.2}Hf_{0.2}Ta_{0.2})O_3$	Cubic	$Pm^{3}m$	1.026	6.50%	
Sr(Zr _{0.2} Sn _{0.2} Ti _{0.2} Hf _{0.2} Mn _{0.2})O ₃	Cubic	$Pm^{3}m$	0.972	7.34%	
$Sr(Zr_{0.2}Sn_{0.2}Ti_{0.2}Hf_{0.2}Nb_{0.2})O_3$	Cubic	$Pm^{\overline{3}}m$	0.968	6.50%	
$Ba(Zr_{0.2}Sn_{0.2}Ti_{0.2}Hf_{0.2}Ce_{0.2})O_3$	Cubic	$Pm^{\overline{3}}m$	1.004	11.92%	16
$Ba(Zr_{0.2}Sn_{0.2}Ti_{0.2}Hf_{0.2}Y_{0.2})O_{3-x}$	Cubic	$Pm\overline{3}m$	1.001	13.30%	
$Ba(Zr_{0.2}Sn_{0.2}Ti_{0.2}Hf_{0.2}Nb_{0.2})O_3$	Cubic	$Pm\overline{3}m$	1.026	6.50%	

Cation	Coordination number ^{1, 2}	Ionic radii (Å) ^{1,2}
La ³⁺	XII	1.36
Nd^{3+}	XII	1.27
Sm^{3+}	XII	1.24
Gd^{3+}	XII	1.27
Pr^{3+}	XII	1.32
Ca^{2+}	XII	1.34
Sr^{2^+}	XII	1.44
Ba^{2+}	XII	1.61
Ho ³⁺	XII	1.23
Dy^{3+}	XII	1.24
Y ³⁺	IX	1.075
Y ³⁺	VI	0.90
Ti ⁴⁺	VI	0.605
Zr^{4+}	VI	0.72
Sn^{4+}	VI	0.69
Hf^{4+}	VI	0.71
Nb^{5+}	VI	0.64
Ta ⁵⁺	VI	0.64
Ce ⁴⁺	VI	0.87
Cr^{3+}	VI	0.615
Fe ³⁺	VI	$0.55^{\text{LS}}, 0.645^{\text{HS}}$
Co ³⁺	VI	$0.545^{\text{LS}}, 0.61^{\text{HS}}$
Ni ³⁺	VI	$0.56^{\text{LS}}, 0.60^{\text{HS}}$
Mn^{3+}	VI	$0.58^{\text{LS}}, 0.645^{\text{HS}}$
O ^{2–}	VI	1.40

Table S5 Ion radius values used to re-calculate Goldschmidt's tolerance factor (*t*) and cation size difference (δ) of reported materials are listed in Table S2. The "LS" in Table means "low spin", and "HS" means "high spin".

Fig. S4 Morphology of sintered pellets of HEALMOs and LSM82:

(a) HEALMO-1, (b) HEALMO-2, (c)HEALMO-3 and (d) LSM82.

Fig. S5 XRD patterns of HEALMOs and LSM82 rectangle bars after electrical conductivity and Seebeck

coefficient measurement.

References

- 1 R. D. Shannon, Acta Crystallogr., Sect. A, 1976, DOI: 10.1107/S0567739476001551.
- 2 Y.-Q. Jia, J. Solid State Chem., 1991, 95, 184-187.
- 3 T. Hashimoto, N. Ishizawa, N. Mizutani and M. Kato, J. Mater. Sci., 1988, 23, 1102-1105.
- 4 R.-S. Liu, C.-H. Shen and S.-F. Hu, Int. J. Inorg. Mater., 2001, 3, 1063–1072.
- 5 S. Xu, Y. Moritomo, K. Ohoyama and A. Nakamura, J. Phys. Soc. Jpn., 2003, 72, 709-712.
- 6 V. A. Cherepanov, E. A. Filonova, V. I. Voronin and I. F. Berger, *J. Solid State Chem.*, 2000, **153**, 205–211.
- 7 S. J. Hibble, S. P. Cooper, A. C. Hannon, I. D. Fawcett and M. Greenblatt, *J. Phys. Condens. Matter*, 1999, **11**, 9221–9238.
- 8 Y. Sakaki, Y. Takeda, A. Kato, N. Imanishi, O. Yamamoto, M. Hattori, M. Iio and Y. Esaki, *Solid State Ionics*, 1999, **118**, 187–194.
- 9 P. V. Vanitha, A. Arulraj, P. N. Santhosh and C. N. R. Rao, Chem. Mater., 2000, 12, 1666–1670.
- 10 T. Liu, L. Li and J.-K. Yu, *Ionics*, 2015, 22, 853-858.
- 11 H.-Y. Tu, Y. Takeda, N. Imanishi and O. Yamamoto, Solid State Ionics, 1997, 100, 283–288.
- 12 A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger, O. Clemens and H. Hahn, *J. Eur. Ceram. Soc.*, 2018, **38**, 2318–2327.
- 13 Y. Yang, H. Bao, H. Ni, X. Ou, S. Wang, B. Lin, P. Feng and Y. Ling, *J. Power Sources*, 2021, DOI: 10.1016/j.jpowsour.2020.228959.
- 14 X. Han, Y. Yang, Y. Fan, H. Ni, Y. Guo, Y. Chen, X. Ou and Y. Ling, *Ceram. Int.*, 2021, DOI: 10.1016/j.ceramint.2021.03.052.
- 15 S. Zhou, Y. Pu, Q. Zhang, R. Shi, X. Guo, W. Wang, J. Ji, T. Wei and T. Ouyang, *Ceram. Int.*, 2020, 46, 7430–7437.
- 16 S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio and J. Luo, Scr. Mater., 2018, 142, 116–120.