## Theoretical study on stability and ion transport property with halide doping of Na<sub>3</sub>SbS<sub>4</sub> electrolyte for all-solid-state battery

## Randy Jalem<sup>a,b,c,\*</sup>, Bo Gao,<sup>a</sup> Hong-Kang Tian,<sup>a</sup> and Yoshitaka Tateyama<sup>a,c,\*</sup>

<sup>a</sup>Center for Green Research on Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), Tsukuba, Japan. E-mail: JALEM.Randy@nims.go.jp; Tel: +81-029-8604636 (ex. 4636).

<sup>b</sup>PRESTO, Japan Science and Technology Agency (JST), Saitama, Japan.

<sup>c</sup>Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Kyoto, Japan.

| Composition                                                       | Initial     | a1 / Å | a <sub>2</sub> / Å | a3 / Å | a <sub>3</sub> /a <sub>1</sub> | a <sub>3</sub> /a <sub>2</sub> |
|-------------------------------------------------------------------|-------------|--------|--------------------|--------|--------------------------------|--------------------------------|
|                                                                   | structure   |        |                    |        |                                |                                |
| Na <sub>3</sub> SbS <sub>4</sub>                                  | Tetragonal  | 7.2207 | 7.2207             | 7.3729 | 1.0211                         | 1.0211                         |
|                                                                   | (unit cell) |        |                    |        |                                |                                |
| Na <sub>2.8750</sub> SbS <sub>3.8750</sub> Cl <sub>0.1250</sub>   | Tetragonal  | 7.2430 | 7.2574             | 7.3682 | 1.0173                         | 1.0153                         |
|                                                                   | (2x2x2)     |        |                    |        |                                |                                |
| Na <sub>2.9375</sub> SbS <sub>3.9375</sub> Cl <sub>0.0625</sub> * | -           | 7.176  | 7.176              | 7.183  | 1.0001                         | 1.0001                         |

Table S1. Comparison of DFT lattice parameters with tetragonal  $Na_3SbS_4$  as the initial structure for undoped and doped models.

\*Experimental data (F. Tsuji et al., J. Ceram. Soc. Jpn 2020, 128, 641-647).

Table S2. Comparison between DFT results (in this work) and experiment (in parenthesis, based from Ref. 33 of main text) for the structural information of t-Na<sub>3</sub>SbS<sub>4</sub>.

| Atom pair | Bond distance / Å | %diff. |
|-----------|-------------------|--------|
| Na1-S(1)  | 2.91 (2.87)       | 1.3    |
| Na1-S(2)  | 2.91 (2.87)       | 1.3    |
| Na1-S(3)  | 3.04 (3.02)       | 0.7    |
| Na1-S(4)  | 3.04 (3.02)       | 0.7    |
| Na1-S(5)  | 3.10 (3.06)       | 1.3    |
| Na1-S(6)  | 3.10 (3.06)       | 1.3    |
| Na2-S(1)  | 3.04 (3.01)       | 1.3    |
| Na2-S(2)  | 3.04 (3.01)       | 1.3    |
| Na2-S(3)  | 3.04 (3.01)       | 1.3    |
| Na2-S(4)  | 3.04 (3.01)       | 1.3    |
| Na2-S(5)  | 3.45 (3.42)       | 0.8    |
| Na2-S(6)  | 3.45 (3.42)       | 0.8    |
| Sb-S      | 2.36 (2.31)       | 2.3    |

| Table S3. Variation | of DFT-calculated | lattice constants with | halide anion dop | oing on c-Na <sub>3</sub> SbS <sub>4</sub> . |
|---------------------|-------------------|------------------------|------------------|----------------------------------------------|
|---------------------|-------------------|------------------------|------------------|----------------------------------------------|

| DFT Composition                                              | Ave. lattice constant / Å<br>(GGA-PBE @0 K) | %diff.<br>(undoped<br>vs.<br>doped) |
|--------------------------------------------------------------|---------------------------------------------|-------------------------------------|
| c-Na <sub>3</sub> SbS <sub>4</sub> (cubic)                   | 7.2466                                      | -                                   |
| Na <sub>2.875</sub> SbS <sub>3.875</sub> F <sub>0.125</sub>  | 7.2775                                      | 0.43                                |
| Na <sub>2.875</sub> SbS <sub>3.875</sub> Cl <sub>0.125</sub> | 7.2900                                      | 0.60                                |
| Na <sub>2.875</sub> SbS <sub>3.875</sub> Br <sub>0.125</sub> | 7.2887                                      | 0.58                                |
| Na <sub>2.875</sub> SbS <sub>3.875</sub> I <sub>0.125</sub>  | 7.3100                                      | 0.87                                |



Figure S1. Schematic illustration of  $2 \times 2 \times 2 \text{ c}$ - Na<sub>3</sub>SbS<sub>4</sub> supercell model showing the SbS<sub>4</sub> tetrahedral units (brown) and 2 S sites substituted by halide dopant atoms (blue).



Figure S2. DFT energy difference between cubic and tetragonal structure as a function of number of vacancies. At each cell with a given number of Na vacancies (i.e., 1, and 2), a structure configuration sampling was performed followed by DFT geometry optimization (10 undoped tetragonal structures, 10 undoped cubic structures, 5 Cl-doped tetragonal structures, and 5 Cl-doped cubic structures). The lowest-energy structures for each cases were taken for the calculation of the energy difference between the cubic and tetragonal structure (i.e.,  $E_{cubic} - E_{tetragonal} / eV/cell$ ).



Figure S3. DFT-calculated total and partial density of states (DOS) of t-Na<sub>3</sub>SbS<sub>4</sub> (P42<sub>1</sub>c).

Table S4. Various phases in the Na-Sb-S system and their DFT-calculated formation energy ( $E_f$ ). First entry (in bold letters) is for t-Na<sub>3</sub>SbS<sub>4</sub> (cell composition: Na<sub>6</sub>Sb<sub>2</sub>S<sub>8</sub>).

| Ce   | ell compositi | on        | Er / eV/atom | Ce  | ll compositi | on  | E <sub>f</sub> / eV/atom | Ce | ll compositi | on   | Ef / eV/atom |
|------|---------------|-----------|--------------|-----|--------------|-----|--------------------------|----|--------------|------|--------------|
| Na6  | Sb2           | <b>S8</b> | -1.09905     | Na8 |              |     | 0.010761                 |    |              | S56  | 0.038013     |
| Na12 | Sb4           | S12       | -1.15974     | Na4 |              |     | 0.003017                 |    |              | S32  | 0.04484      |
| Na2  | S4            | Sb2       | -1.01534     | Na3 |              |     | 0.000231                 |    |              | S88  | 0.028838     |
| Na3  | S4            | Sb1       | -1.09459     | Na2 |              |     | 0                        |    |              | S20  | 0.032116     |
| Na2  | Sb2           | S4        | -0.99488     | Na8 |              |     | 0.069048                 |    |              | S28  | 0.020189     |
| Na8  | Sb8           |           | -0.32833     | Na1 |              |     | 0.000106                 |    |              | S36  | 0.016808     |
| Na6  | Sb2           |           | -0.43777     | Na1 |              |     | 0.002694                 |    |              | S28  | 0.041008     |
| Na4  |               | S2        | -1.19118     | Na1 |              |     | 1.072084                 |    |              | S48  | 0.001343     |
| Na8  |               | S4        | -1.25482     |     | Sb2          |     | 0.280245                 |    |              | S24  | 0.015913     |
| Na2  |               | S1        | -1.29437     |     | Sb2          |     | 0.065751                 |    |              | S80  | 0.014414     |
| Na6  |               | S6        | -1.16219     |     | Sb1          |     | 0.324607                 |    |              | S104 | 0.028873     |
| Na1  |               | S1        | -0.79163     |     | Sb4          |     | 0.261254                 |    |              | S72  | 0.020778     |
| Na4  |               | S4        | -1.16472     |     | Sb4          |     | 0.114852                 |    |              | S72  | 0.037362     |
| Na1  |               | S1        | -0.66411     |     | Sb1          |     | 0.311715                 |    |              | S18  | 0.355        |
|      | Sb8           | S12       | -0.65163     |     | Sb1          |     | 0.234278                 |    |              | S4   | 1.122607     |
|      | Sb8           | S20       | -0.43184     |     | Sb1          |     | 0.048567                 |    |              | S4   | 0.342059     |
|      | Sb17          | S27       | -0.58276     |     | Sb2          |     | 0                        |    |              | S4   | 0.343461     |
|      | Sb11          | S18       | -0.56467     |     | Sb14         |     | 0.315406                 |    |              | S6   | 0.06543      |
|      | Sb2           | S4        | -0.31157     |     |              | S32 | 0                        |    |              | S1   | 0.621523     |
| []   | Sb2           | S2        | -0.36271     |     |              | S32 | 0.000961                 |    |              | S4   | 0.509846     |
| Na4  |               |           | 0.128501     |     |              | S18 | 0.442006                 |    |              | S9   | 0.04123      |
| Na1  |               |           | 0.0026       |     |              | S8  | 0.010616                 |    |              | S1   | 1.298147     |



Figure S4. Na-Sb-S thermodynamic phase diagram. Na $_3$ SbS $_4$  is indicated by a red square.

Table S5. Detailed chemical reactions and critical chemical potentials from grand potential phase diagram analysis for open transition metal (TM) species for different layered-type Na[TM]O<sub>2</sub> (TM = {V, Cr, Mn, Fe, Co, Ni}) cathode compounds. Note:  $\mu_V = 0$ ,  $\mu_{Cr} = 0$ ,  $\mu_{Mn} = 0$ ,  $\mu_{Fe} = 0$ ,  $\mu_{Co} = 0$ , and  $\mu_{Ni} = 0$  are referenced to the chemical potentials of V metal ( $\mu_V^0 = -9.0866 \text{ eV}$ ), Cr metal ( $\mu_{Cr}^0 = -9.6367 \text{ eV}$ ), Mn metal ( $\mu_{Mn}^0 = -9.1592 \text{ eV}$ ), Fe metal ( $\mu_{Fe}^0 = -8.4598 \text{ eV}$ ), Co metal ( $\mu_{Co}^0 = -7.1100 \text{ eV}$ ), and Ni metal ( $\mu_{Ni}^0 = -5.7811 \text{ eV}$ ), respectively.

| Compound                  | Open TM | Critical reactions ( $\mu_{TM}$ relative to $\mu_{TM}^{0}$ )                                                                             |
|---------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------|
|                           | element |                                                                                                                                          |
| NaVO <sub>2</sub> (@full  | V       | $NaVO_2 \rightarrow NaVO_2 (0 eV)$                                                                                                       |
| sodiation)                |         | NaVO <sub>2</sub> → $0.2222 V_2O_3 + 0.3333 Na_3VO_4 + 0.2222 V (-1.7950 eV)$                                                            |
| VO <sub>2</sub> (@full    | V       | $2 \operatorname{VO}_2 \rightarrow 2 \operatorname{VO}_2 (-3.071 \text{ eV})$                                                            |
| desodiation)              |         | 2 VO <sub>2</sub> → 0.5714 V <sub>3</sub> O <sub>7</sub> + 0.2857 V (-4.7314 eV)                                                         |
| NaCrO <sub>2</sub> (@full | Cr      | $NaCrO_2 \rightarrow NaCrO_2 (0 eV)$                                                                                                     |
| sodiation)                |         | NaCrO <sub>2</sub> → 0.5 Na <sub>2</sub> CrO <sub>4</sub> + 0.5 Cr (-4.0055 eV)                                                          |
| CrO <sub>2</sub> (@full   | Cr      | $2 \operatorname{CrO}_2 \rightarrow 2 \operatorname{CrO}_2 (-4.9986 \text{ eV})$                                                         |
| desodiation)              |         | 2 CrO <sub>2</sub> → 0.3333 Cr <sub>5</sub> O <sub>12</sub> + 0.3333 Cr (-5.5896 eV)                                                     |
| NaMnO <sub>2</sub> (@full | Mn      | $2 \text{ NaMnO}_2 \rightarrow 2 \text{ NaMnO}_2 (-0.2598 \text{ eV})$                                                                   |
| sodiation)                |         | 2 NaMnO <sub>2</sub> → 0.75 Na <sub>2</sub> MnO <sub>3</sub> + 0.25 Na <sub>2</sub> Mn <sub>3</sub> O <sub>7</sub> + 0.5 Mn (-3.5522 eV) |
| MnO <sub>2</sub> (@full   | Mn      | $4 \operatorname{MnO}_2 \rightarrow 4 \operatorname{MnO}_2 (-3.9869 \text{ eV})$                                                         |
| desodiation)              |         | $4 \operatorname{MnO}_2 \rightarrow 4 \operatorname{O}_2 + 4 \operatorname{Mn} (-5.4311 \text{ eV})$                                     |
| NaFeO <sub>2</sub> (@full | Fe      | 2 NaFeO <sub>2</sub> → 2 NaFeO <sub>2</sub> (0 eV)                                                                                       |
| sodiation)                |         | 2 NaFeO <sub>2</sub> → 2 NaO <sub>2</sub> + 2 Fe (-5.0297 eV)                                                                            |
| FeO <sub>2</sub> (@full   | Fe      | 2 FeO <sub>2</sub> + 0.6667 Fe → 1.333 Fe <sub>2</sub> O <sub>3</sub> (-0.9179 eV)                                                       |
| desodiation)              |         | $2 \text{ FeO}_2 \rightarrow 2 \text{ O}_2 + 2 \text{ Fe} (-4.7154 \text{ eV})$                                                          |
| NaCoO <sub>2</sub> (@full | Со      | $2 \operatorname{NaCoO}_2 \rightarrow 2 \operatorname{NaCoO}_2 (-0.0769 \text{ eV})$                                                     |
| sodiation)                |         | 2 NaCoO <sub>2</sub> → 0.4 Na <sub>3</sub> (CoO <sub>2</sub> ) <sub>4</sub> + 0.2 Na <sub>4</sub> CoO <sub>4</sub> + 0.2 Co (-2.7802 eV) |
| CoO <sub>2</sub> (@full   | Co      | $4 \operatorname{CoO}_2 \rightarrow 4 \operatorname{CoO}_2 (-3.0933 \text{ eV})$                                                         |
| desodiation)              |         | $4 \operatorname{CoO}_2 \xrightarrow{} 4 \operatorname{O}_2 + 4 \operatorname{Co} (-3.4132 \text{ eV})$                                  |
| NaNiO <sub>2</sub> (@full | Ni      | 2 NaNiO <sub>2</sub> → 2 NaNiO <sub>2</sub> (-0.3627 eV)                                                                                 |
| sodiation)                |         | 2 NaNiO <sub>2</sub> → 2 NaO <sub>2</sub> + 2 Ni (-2.1525 eV)                                                                            |
| NiO <sub>2</sub> (@full   | Ni      | $NiO_2 + 0.5 Ni \rightarrow 0.5 Ni_3O_4 (-1.7025 eV)$                                                                                    |
| desodiation)              |         | $NiO_2 \rightarrow O_2 + Ni (-1.9185 \text{ eV})$                                                                                        |

Table S6. Detailed chemical reactions and critical chemical potentials from grand potential phase diagram analysis for open transition metal (TM) species for different electrolyte/electrolyte-related compounds. Note:  $\mu_V = 0$ ,  $\mu_{Cr} = 0$ ,  $\mu_{Mn} = 0$ ,  $\mu_{Fe} = 0$ ,  $\mu_{Co} = 0$ , and  $\mu_{Ni} = 0$  are referenced to the chemical potentials of V metal ( $\mu_V^0 = -9.0866 \text{ eV}$ ), Cr metal ( $\mu_{Cr}^0 = -9.6367 \text{ eV}$ ), Mn metal ( $\mu_{Ni}^0 = -9.1592 \text{ eV}$ ), Fe metal ( $\mu_{Fe}^0 = -8.4598 \text{ eV}$ ), Co metal ( $\mu_{Co}^0 = -7.1100 \text{ eV}$ ), and Ni metal ( $\mu_{Ni}^0 = -5.7811 \text{ eV}$ ), respectively.

| Compound                         | Open TM | Critical reactions ( $\mu_{TM}$ relative to $\mu_{TM}^{0}$ )                                                                                                  |
|----------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | element |                                                                                                                                                               |
| Na <sub>3</sub> SbS <sub>4</sub> | V       | 2 Na <sub>3</sub> SbS <sub>4</sub> + 0.8 V → 0.8 Na <sub>3</sub> SbS <sub>3</sub> + 1.2 NaSbS <sub>2</sub> + 0.8 Na <sub>3</sub> VS <sub>4</sub> (-1.5665 eV) |
|                                  |         | $2 \operatorname{Na_3SbS_4} \rightarrow 2 \operatorname{Na_3SbS_4} (-3.2691 \text{ eV})$                                                                      |
|                                  | Cr      | 2 Na <sub>3</sub> SbS <sub>4</sub> + 1.333 Cr → 1.333 NaCrS <sub>2</sub> + 0.6667 NaSbS <sub>2</sub> + 1.333 Na <sub>3</sub> SbS <sub>3</sub> (-              |
|                                  |         | 1.0402 eV)                                                                                                                                                    |
|                                  |         | $2 \operatorname{Na_3SbS_4} \rightarrow 2 \operatorname{Na_3SbS_4} (-2.0617 \text{ eV})$                                                                      |
|                                  | Mn      | $2 \operatorname{Na_3SbS_4} + \operatorname{Mn} \rightarrow 2 \operatorname{Na_3SbS_3} + \operatorname{MnS_2} (-0.8262 \text{ eV})$                           |
|                                  |         | $2 \operatorname{Na_3SbS_4} \rightarrow 2 \operatorname{Na_3SbS_4} (-1.6204 \text{ eV})$                                                                      |
|                                  | Fe      | $2 \operatorname{Na_3SbS_4} + \operatorname{Fe} \rightarrow 2 \operatorname{Na_3SbS_3} + \operatorname{FeS_2} (-0.5356 \text{ eV})$                           |
|                                  |         | $2 \operatorname{Na_3SbS_4} \rightarrow 2 \operatorname{Na_3SbS_4} (-1.4968 \text{ eV})$                                                                      |
|                                  | Со      | $2 \operatorname{Na_3SbS_4} + \operatorname{Co} \rightarrow \operatorname{CoS_2} + 2 \operatorname{Na_3SbS_3} (-0.9348 \text{ eV})$                           |
|                                  |         | $2 \operatorname{Na_3SbS_4} \rightarrow 2 \operatorname{Na_3SbS_4} (-1.0114 \text{ eV})$                                                                      |
|                                  | Ni      | 2 Na <sub>3</sub> SbS <sub>4</sub> + 1.5 Ni → 2 Na <sub>3</sub> SbS <sub>3</sub> + 0.5 Ni <sub>3</sub> S <sub>4</sub> (-0.4050 eV)                            |
|                                  |         | $2 \operatorname{Na_3SbS_4} \rightarrow 2 \operatorname{Na_3SbS_4} (-0.8448 \text{ eV})$                                                                      |
| Na <sub>3</sub> SbS <sub>3</sub> | V       | $4 \text{ Na}_{3}\text{SbS}_{3} + 2.4 \text{ V} \rightarrow 2.4 \text{ Na}_{3}\text{VS}_{4} + 2.4 \text{ Na}_{2}\text{S} + 4 \text{ Sb} (-1.0179 \text{ eV})$ |
|                                  |         | $4 \operatorname{Na_3SbS_3} \rightarrow 4 \operatorname{Na_3SbS_3} (-1.3927 \text{ eV})$                                                                      |
|                                  | Cr      | $4 \operatorname{Na_3SbS_3} + 4 \operatorname{Cr} \rightarrow 4 \operatorname{NaCrS_2} + 4 \operatorname{Na_2S} + 4 \operatorname{Sb} (0 \text{ eV})$         |
|                                  |         | $4 \operatorname{Na_3SbS_3} \rightarrow 4 \operatorname{Na_3SbS_3} (-0.8664 \text{ eV})$                                                                      |
|                                  | Mn      | $4 \text{ Na}_3\text{SbS}_3 + 6 \text{ Mn} \rightarrow 2 \text{ Na}_6\text{MnS}_4 + 4 \text{ MnS} + 4 \text{ Sb} (-0.0674 \text{ eV})$                        |
|                                  |         | $4 \operatorname{Na_3SbS_3} \rightarrow 4 \operatorname{Na_3SbS_3} (-0.4704 \text{ eV})$                                                                      |
|                                  | Fe      | $4 \operatorname{Na_3SbS_3} + 6 \operatorname{Fe} \rightarrow 2 \operatorname{FeS} + 4 \operatorname{FeSbS} + 6 \operatorname{Na_2S} (0 \text{ eV})$          |
|                                  |         | $4 \operatorname{Na_3SbS_3} \rightarrow 4 \operatorname{Na_3SbS_3} (-0.2034 \text{ eV})$                                                                      |
|                                  | Со      | 4 Na <sub>3</sub> SbS <sub>3</sub> + 8.083 Co → 0.75 Co <sub>9</sub> S <sub>8</sub> + 1.333 CoSb <sub>3</sub> + 6 Na <sub>2</sub> S (-0.1089 eV)              |
|                                  |         | $4 \operatorname{Na_3SbS_3} \rightarrow 4 \operatorname{Na_3SbS_3} (-0.2358 \text{ eV})$                                                                      |
|                                  | Ni      | $4 \text{ Na}_3\text{SbS}_3 + 13 \text{ Ni} \rightarrow 3 \text{ Ni}_3\text{S}_2 + 4 \text{ NiSb} + 6 \text{ Na}_2\text{S} (-0.0374 \text{ eV})$              |
|                                  |         | $4 \operatorname{Na_3SbS_3} \rightarrow 4 \operatorname{Na_3SbS_3} (-0.1900 \text{ eV})$                                                                      |
| NaSbS <sub>2</sub>               | V       | 2 NaSbS <sub>2</sub> + $1.667$ V → $0.6667$ Na <sub>3</sub> VS <sub>4</sub> + $0.3333$ V <sub>3</sub> S <sub>4</sub> + 2 Sb (-1.0179 eV)                      |
|                                  |         | $2 \text{ NaSbS}_2 \rightarrow 2 \text{ NaSbS}_2 (-1.4963 \text{ eV})$                                                                                        |
|                                  | Cr      | $2 \operatorname{NaSbS}_2 + 2 \operatorname{Cr} \rightarrow 2 \operatorname{NaCrS}_2 + 2 \operatorname{Sb} (0 \text{ eV})$                                    |

|                   |    | $2 \text{ NaSbS}_2 \rightarrow 2 \text{ NaSbS}_2 (-1.0402 \text{ eV})$                                                                              |
|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Mn | 2 NaSbS <sub>2</sub> + 2 Mn → 0.6667 Na <sub>3</sub> SbS <sub>3</sub> + 2 MnS + 1.333 Sb (-0.4704 eV)                                               |
|                   |    | $2 \text{ NaSbS}_2 \rightarrow 2 \text{ NaSbS}_2 (-0.5422 \text{ eV})$                                                                              |
|                   | Fe | 2 NaSbS <sub>2</sub> + 2 Fe → 0.6667 Na <sub>3</sub> SbS <sub>3</sub> + 0.6667 FeS + 1.333 FeSbS (-0.2034 eV)                                       |
|                   |    | $2 \text{ NaSbS}_2 \rightarrow 2 \text{ NaSbS}_2 (-0.3771 \text{ eV})$                                                                              |
|                   | Со | 2 NaSbS <sub>2</sub> + 2.694 Co → 0.25 Co <sub>9</sub> S <sub>8</sub> + 0.6667 Na <sub>3</sub> SbS <sub>3</sub> + 0.4444 CoSb <sub>3</sub> (-0.2358 |
|                   |    | eV)                                                                                                                                                 |
|                   |    | $2 \text{ NaSbS}_2 \rightarrow 2 \text{ NaSbS}_2 (-0.3648 \text{ eV})$                                                                              |
|                   | Ni | 2 NaSbS <sub>2</sub> + 4.333 Ni → 0.6667 Na <sub>3</sub> SbS <sub>3</sub> + Ni <sub>3</sub> S <sub>2</sub> + 1.333 NiSb (-0.1900 eV)                |
|                   |    | $2 \text{ NaSbS}_2 \rightarrow 2 \text{ NaSbS}_2 (-0.2702 \text{ eV})$                                                                              |
| Na <sub>2</sub> S | V  | $2 \operatorname{Na}_2 S \rightarrow 2 \operatorname{Na}_2 S (0 \text{ eV})$                                                                        |
|                   | Cr | $2 \operatorname{Na}_2 S \rightarrow 2 \operatorname{Na}_2 S (0 \text{ eV})$                                                                        |
|                   | Mn | $2 \operatorname{Na}_2 S \rightarrow 2 \operatorname{Na}_2 S (0 \text{ eV})$                                                                        |
|                   | Fe | $2 \operatorname{Na_2S} \rightarrow 2 \operatorname{Na_2S} (0 \text{ eV})$                                                                          |
|                   | Со | $2 \operatorname{Na}_2 S \rightarrow 2 \operatorname{Na}_2 S (0 \text{ eV})$                                                                        |
|                   | Ni | $2 \operatorname{Na}_2 S \rightarrow 2 \operatorname{Na}_2 S (0 \text{ eV})$                                                                        |

Table S7. Detailed chemical reactions and critical chemical potentials from grand potential phase diagram analysis for open X species (X = {O, Sb, S}) for different layered-type Na[TM]O<sub>2</sub> (TM = {V, Cr, Mn, Fe, Co, Ni}) cathode compounds. Note:  $\mu_0 = 0$ ,  $\mu_{Sb} = 0$  and  $\mu_S = 0$  are referenced to the chemical potentials of 1/2O<sub>2</sub> gas ( $\mu_0^0 = -4.9355 \text{ eV}$ ), Sb metal ( $\mu_{Sb}^0 = -4.1278 \text{ eV}$ ), and S solid ( $\mu_S^0 = -4.1279 \text{ eV}$ ), respectively.

| Compound                  | Open X  | Critical reactions ( $\mu_X$ relative to $\mu_X^0$ )                                                                       |
|---------------------------|---------|----------------------------------------------------------------------------------------------------------------------------|
|                           | element |                                                                                                                            |
| NaVO <sub>2</sub> (@full  | 0       | $NaVO_2 \rightarrow NaVO_2 (-3.0210 \text{ eV})$                                                                           |
| sodiation)                |         | $NaVO_2 \rightarrow V + Na + O_2 (-4.6840 \text{ eV})$                                                                     |
|                           | Sb      | $NaVO_2 \rightarrow NaVO_2(0 eV)$                                                                                          |
|                           | S       | $NaVO_2 \rightarrow NaVO_2(-1.1630 \text{ eV})$                                                                            |
| VO <sub>2</sub> (@full    | 0       | $2 \operatorname{VO}_2 \rightarrow 2 \operatorname{VO}_2 (-1.3608 \text{ eV})$                                             |
| desodiation)              |         | 2 VO <sub>2</sub> → 0.6667 V <sub>3</sub> O <sub>5</sub> + 0.3333 O <sub>2</sub> (-2.1908 eV)                              |
|                           | Sb      | $2 \operatorname{VO}_2 \xrightarrow{} 2 \operatorname{VO}_2 (-1.5958 \text{ eV})$                                          |
|                           | S       | $2 \operatorname{VO}_2 \xrightarrow{} 2 \operatorname{VO}_2 (-1.7449 \text{ eV})$                                          |
| NaCrO <sub>2</sub> (@full | 0       | $NaCrO_2 \rightarrow NaCrO_2 (-1.2456 \text{ eV})$                                                                         |
| sodiation)                |         | $NaCrO_2 \rightarrow Cr + Na + O_2 (-4.5194 \text{ eV})$                                                                   |
|                           | Sb      | $NaCrO_2 \rightarrow NaCrO_2 (0 eV)$                                                                                       |
|                           | S       | $NaCrO_2 \rightarrow NaCrO_2 (-1.0065 \text{ eV})$                                                                         |
| CrO <sub>2</sub> (@full   | 0       | $2 \operatorname{CrO}_2 \xrightarrow{} 2 \operatorname{CrO}_2 (-0.2880 \text{ eV})$                                        |
| desodiation)              |         | $2 \text{ CrO}_2 \rightarrow \text{Cr}_2\text{O}_3 + 0.5 \text{ O}_2 (-0.5836 \text{ eV})$                                 |
|                           | Sb      | $2 \operatorname{CrO}_2 \rightarrow 2 \operatorname{CrO}_2 (-5.4118 \text{ eV})$                                           |
|                           | S       | $2 \operatorname{CrO}_2 \rightarrow 2 \operatorname{CrO}_2 (-6.4591 \text{ eV})$                                           |
| NaMnO <sub>2</sub> (@full | 0       | $2 \text{ NaMnO}_2 \rightarrow 2 \text{ NaMnO}_2 (-1.1808 \text{ eV})$                                                     |
| sodiation)                |         | 2 NaMnO <sub>2</sub> → Na <sub>2</sub> Mn <sub>2</sub> O <sub>3</sub> + 0.5 O <sub>2</sub> (-3.7410 eV)                    |
|                           | Sb      | $2 \text{ NaMnO}_2 \rightarrow 2 \text{ NaMnO}_2 (-0.7291 \text{ eV})$                                                     |
|                           | S       | $2 \text{ NaMnO}_2 \rightarrow 2 \text{ NaMnO}_2 (-1.8060 \text{ eV})$                                                     |
| MnO <sub>2</sub> (@full   | 0       | $4 \operatorname{MnO}_2 \rightarrow 4 \operatorname{MnO}_2 (0 \text{ eV})$                                                 |
| desodiation)              |         | $4 \operatorname{MnO}_2 \xrightarrow{} 2 \operatorname{Mn}_2 \operatorname{O}_3 + \operatorname{O}_2 (-0.7220 \text{ eV})$ |
|                           | Sb      | $4 \operatorname{MnO}_2 \rightarrow 4 \operatorname{MnO}_2 (-4.8282 \text{ eV})$                                           |
|                           | S       | $4 \operatorname{MnO}_2 \rightarrow 4 \operatorname{MnO}_2 (-6.1673 \text{ eV})$                                           |
| NaFeO <sub>2</sub> (@full | 0       | $2 \text{ NaFeO}_2 \rightarrow 2 \text{ NaFeO}_2 (0 \text{ eV})$                                                           |
| sodiation)                |         | 2 NaFeO <sub>2</sub> → 0.6667 Na <sub>3</sub> FeO <sub>3</sub> + 1.333 Fe + O <sub>2</sub> (-3.6000 eV)                    |
|                           | Sb      | $2 \text{ NaFeO}_2 \rightarrow 2 \text{ NaFeO}_2 (0 \text{ eV})$                                                           |
|                           | S       | $2 \text{ NaFeO}_2 \rightarrow 2 \text{ NaFeO}_2 (-1.3806 \text{ eV})$                                                     |

| FeO <sub>2</sub> (@full   | 0  | $2 \operatorname{FeO}_2 \xrightarrow{} 2 \operatorname{Fe} + 2 \operatorname{O}_2 (-3.3572 \text{ eV})$         |
|---------------------------|----|-----------------------------------------------------------------------------------------------------------------|
| desodiation)              | Sb | $2 \text{ FeO}_2 \rightarrow \text{Fe}_2\text{O}_3 + 0.5 \text{ O}_2 (-6.8397 \text{ eV})$                      |
|                           | S  | $2 \text{ FeO}_2 \rightarrow \text{Fe}_2\text{O}_3 + 0.5 \text{ O}_2 (-8.3005 \text{ eV})$                      |
| NaCoO <sub>2</sub> (@full | 0  | $2 \operatorname{NaCoO}_2 \rightarrow 2 \operatorname{NaCoO}_2 (-0.6634 \text{ eV})$                            |
| sodiation)                |    | 2 NaCoO <sub>2</sub> → 1.333 CoO + 0.6667 Na <sub>3</sub> CoO <sub>3</sub> + 0.3333 O <sub>2</sub> (-2.5832 eV) |
|                           | Sb | $2 \operatorname{NaCoO}_2 \rightarrow 2 \operatorname{NaCoO}_2 (-2.7485 \text{ eV})$                            |
|                           | S  | $2 \operatorname{NaCoO}_2 \rightarrow 2 \operatorname{NaCoO}_2 (-3.6036 \text{ eV})$                            |
| CoO <sub>2</sub> (@full   | 0  | $4 \operatorname{CoO}_2 \xrightarrow{} 4 \operatorname{CoO}_2 (0 \text{ eV})$                                   |
| desodiation)              |    | 4 CoO <sub>2</sub> → 1.333 Co <sub>3</sub> O <sub>4</sub> + 1.333 O <sub>2</sub> (-0.1600 eV)                   |
|                           | Sb | $4 \operatorname{CoO}_2 \rightarrow 4 \operatorname{CoO}_2 (-6.2564 \text{ eV})$                                |
|                           | S  | $4 \operatorname{CoO}_2 \xrightarrow{} 4 \operatorname{CoO}_2 (-7.5514 \text{ eV})$                             |
| NaNiO <sub>2</sub> (@full | 0  | 2 NaNiO <sub>2</sub> → 2 NaNiO <sub>2</sub> (-0.0040 eV)                                                        |
| sodiation)                |    | 2 NaNiO <sub>2</sub> → 0.4 Na <sub>5</sub> NiO <sub>4</sub> + 1.6 NiO + 0.4 O <sub>2</sub> (-1.5018 eV)         |
|                           | Sb | 2 NaNiO <sub>2</sub> → 2 NaNiO <sub>2</sub> (-6.1942 eV)                                                        |
|                           | S  | 2 NaNiO <sub>2</sub> → 2 NaNiO <sub>2</sub> (-7.3372 eV)                                                        |
| NiO <sub>2</sub> (@full   | 0  | $NiO_2 \rightarrow Ni + O_2 (-3.7290 \text{ eV})$                                                               |
| desodiation)              | Sb | NiO <sub>2</sub> → 0.3333 Ni <sub>3</sub> O <sub>4</sub> + 0.3333 O <sub>2</sub> (-6.8918 eV)                   |
|                           | S  | NiO <sub>2</sub> → 0.3333 Ni <sub>3</sub> O <sub>4</sub> + 0.3333 O <sub>2</sub> (-8.4912 eV)                   |

Table S8. Detailed chemical reactions and critical chemical potentials from grand potential phase diagram analysis for open X species (X = {O, Sb, S}) for different electrolyte/electrolyte-related compounds. Note:  $\mu_0 = 0$ ,  $\mu_{Sb} = 0$  and  $\mu_S = 0$  are referenced to the chemical potentials of 1/2O<sub>2</sub> gas ( $\mu_0^0 = -4.9355 \text{ eV}$ ), Sb metal ( $\mu_{Sb}^0 = -4.1278 \text{ eV}$ ), and S solid ( $\mu_S^0 = -4.1279 \text{ eV}$ ), respectively.

| Compound                         | Open X  | Critical reactions ( $\mu_X$ relative to $\mu_X^0$ )                                                                            |
|----------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------|
|                                  | element |                                                                                                                                 |
| Na <sub>3</sub> SbS <sub>4</sub> | 0       | $2 \operatorname{Na_3SbS_4} \rightarrow 2 \operatorname{Na_3SbS_4} (-3.0102 \text{ eV})$                                        |
|                                  | Sb      | $2 \operatorname{Na_3SbS_4} \rightarrow 2 \operatorname{Na_3SbS_4} (-1.0216 \text{ eV})$                                        |
|                                  |         | $2 \text{ Na}_3\text{SbS}_4 \rightarrow 3 \text{ Na}_2\text{S} + 5 \text{ S} + 2 \text{ Sb} (-2.9677 \text{ eV})$               |
|                                  | S       | $2 \operatorname{Na_3SbS_4} \rightarrow 2 \operatorname{Na_3SbS_4} (0 \text{ eV})$                                              |
|                                  |         | $2 \text{ Na}_3\text{SbS}_4 \rightarrow 2 \text{ Na}_3\text{SbS}_3 + 2 \text{ S} (-0.6742 \text{ eV})$                          |
| Na <sub>3</sub> SbS <sub>3</sub> | 0       | $4 \operatorname{Na_3SbS_3} \rightarrow 4 \operatorname{Na_3SbS_3} (-3.0512 \text{ eV})$                                        |
|                                  | Sb      | $4 \operatorname{Na_3SbS_3} \rightarrow 4 \operatorname{Na_3SbS_3} (0 \text{ eV})$                                              |
|                                  |         | 4 Na <sub>3</sub> SbS <sub>3</sub> → 2.4 Na <sub>3</sub> SbS <sub>4</sub> + 2.4 Na <sub>2</sub> S + 1.6 Sb (-1.2822 eV)         |
|                                  | S       | $4 \operatorname{Na_3SbS_3} \rightarrow 4 \operatorname{Na_3SbS_3} (-0.6742 \text{ eV})$                                        |
|                                  |         | $4 \operatorname{Na_3SbS_3} \rightarrow 6 \operatorname{Na_2S} + 4 \operatorname{Sb} + 6 \operatorname{S} (-1.5290 \text{ eV})$ |
| NaSbS <sub>2</sub>               | 0       | $2 \text{ NaSbS}_2 \rightarrow 2 \text{ NaSbS}_2 (-2.8492 \text{ eV})$                                                          |
|                                  | Sb      | $2 \text{ NaSbS}_2 \rightarrow 2 \text{ NaSbS}_2 (0 \text{ eV})$                                                                |
|                                  |         | 2 NaSbS <sub>2</sub> → 0.6667 Na <sub>3</sub> SbS <sub>4</sub> + 1.333 S + 1.333 Sb (-1.6958 eV)                                |
|                                  | S       | $2 \text{ NaSbS}_2 \rightarrow 2 \text{ NaSbS}_2 (0 \text{ eV})$                                                                |
|                                  |         | 2 NaSbS <sub>2</sub> → 0.6667 NaSbS <sub>2</sub> + 1.333 Sb + 2 S (-1.3553 eV)                                                  |
| Na <sub>2</sub> S                | 0       | $2 \operatorname{Na_2S} \rightarrow 2 \operatorname{Na_2S} (-3.0946 \text{ eV})$                                                |
|                                  | Sb      | $2 \operatorname{Na}_2 S \rightarrow 2 \operatorname{Na}_2 S (0 \text{ eV})$                                                    |
|                                  | S       | $2 \operatorname{Na}_2 S \rightarrow 2 \operatorname{Na}_2 S (0 \text{ eV})$                                                    |
|                                  |         | $2 \operatorname{Na_2S} \rightarrow 4 \operatorname{Na} + 2 \operatorname{S} (-3.8831 \text{ eV})$                              |



Figure S5. a-b) Schematic illustration summary for  $X = \{O, Sb, S\}$  species tendency to migrate across the Na[*TM*]O<sub>2</sub>-SE interface (SE: solid electrolyte).



Figure S6. Mean square displacement (*MSD*) plots derived from DFT-MD calculations: a) 1-vacancy undoped (1v-u), b) 2-vacancy F-doped (2v-F), c) 2-vacancy Cl-doped (2v-Cl), d) 2-vacancy Br-doped (2v-Br), e) 2-vacancy I-doped (2v-I) model, and f) highlighted MSD plots at 373-K for a-e.



Figure S7. Li-atom mean square displacement (*MSD*) plot of c-NSS from DFT-MD calculation under NVT ensemble condition at 473 K.

## **Diffusion barrier calculation**

Nudged elastic band (NEB) supercell (2 x 2 x 2) method was used to estimate ion diffusion barrier values.<sup>59</sup> For the Na local pathway, 7 intermediate images were interpolated linearly between fully optimized initial and final structure coordinate data. Energy barriers were then obtained in the dilute vacancy limit (or one vacancy/supercell) with cell edges of at least 14 Å.



Figure S8. DFT-NEB Na ion migration energy comparison for Na1-Na1 pathway for  $Na_3SbS_4$  and related compounds.



Figure S9. Visualization of local Na pathways calculated by DFT-NEB for SE-related compounds: a) Na<sub>3</sub>SbS<sub>3</sub>, b) NaSbS<sub>2</sub>, c) Na<sub>2</sub>S.

| Voltage (V vs. Na/Na <sup>+</sup> ) | Decomposition reaction                                                                                                                                                            |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                   | $2Na_{23}Sb_8S_{31}Cl$ + 128Na → 16Na <sub>3</sub> Sb + 62Na <sub>2</sub> S + 2NaCl                                                                                               |
| 0.53                                | $2Na_{23}Sb_8S_{31}Cl + 96Na \rightarrow 16NaSb + 62Na_2S + 2NaCl$                                                                                                                |
| 0.65                                | $2Na_{23}Sb_8S_{31}Cl + 80Na → 62Na_2S + 2NaCl + 16Sb$                                                                                                                            |
| 1.17                                | $2Na_{23}Sb_8S_{31}Cl + 32Na \rightarrow 16Na_3SbS_3 + 14Na_2S + 2NaCl$                                                                                                           |
| 1.54                                | $2Na_{23}Sb_8S_{31}Cl + 18Na \rightarrow 14NaS + 16Na_3SbS_3 + 2NaCl$                                                                                                             |
| 1.56                                | $2Na_{23}Sb_8S_{31}Cl + 11Na \rightarrow 7NaS_2 + 16Na_3SbS_3 + 2NaCl$                                                                                                            |
| 1.65                                | $2\mathrm{Na}_{23}\mathrm{Sb}_8\mathrm{S}_{31}\mathrm{Cl} \rightarrow 15\mathrm{Na}\mathrm{S}_2 + 16\mathrm{Na}\mathrm{Sb}\mathrm{S}_2 + 2\mathrm{Na}\mathrm{Cl} + 13\mathrm{Na}$ |
| 1.82                                | $2Na_{23}Sb_8S_{31}Cl \rightarrow 16NaSbS_2 + 6Na_2S_5 + 2NaCl + 16Na$                                                                                                            |
| 2.18                                | $2Na_{23}Sb_8S_{31}Cl \rightarrow 7.6Na_2S_5 + 8Sb_2S_3 + 2NaCl + 28.8Na$                                                                                                         |
| 2.22                                | $2Na_{23}Sb_8S_{31}Cl \rightarrow 6.733Na_2S_5 + 7.667Sb_2S_3 + 0.6667SbS_8Cl_3 +$                                                                                                |
|                                     | 32.53Na                                                                                                                                                                           |
| 3.38                                | $2Na_{23}Sb_8S_{31}Cl \rightarrow 7.667Sb_2S_3 + 0.6667SbS_8Cl_3 + 33.67S + 46Na$                                                                                                 |

Table S9. Summary of DFT-predicted decomposition reactions related to voltage stability window for Na with Cl-doped Na<sub>3</sub>SbS<sub>4</sub>.