Supplementary Information

Tuning Ferrous Coordination Structure Enables a HighlyReversible Fe Anode for Long-life All-ironFlow

Batteries

Yuxi Song,^{a,b} Kaiyue Zhang,^a Xiangrong Li,^a Chuanwei Yan,^a Qinghua Liu,^{c*} Ao Tang,^{a*}

^a Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China

^b School of Material Science and Engineering, University of Science and Technology of China, Shenyang, China.

^c National Institute of Clean-and-Low-Carbon Energy, Beijing, China

*Corresponding author:

Ao Tang Email: a.tang@imr.ac.cn

Qinghua Liu Email: liuqinghua@chnenergy.com.cn

Tel: +86-024-81083919 Fax: +86-024-23998320

Fig. S1. The relationship between pH variation and H_2 evolution during charging. Note: Measurements of pH and H2 collection were taken in a three-electrode system.

Fig. S2. The photos of (a) $FeCl_2$, (b) Fe^{2+} -cit and (c) Fe^{2+} -gly at different SOCs in the charge-discharge tests.

Fig. S3. The UV-vis spectrum of Fe^{2+} -cit and Na^+ -cit. Inset: photos of Na^+ -cit, Fe^{2+} -cit and $FeCl_2$.

Fig. S4. (a) A complete charge-discharge cycle of the full cell adopting Fe²⁺-gly anolyte;
(b) the corresponding pH variation of the Fe²⁺-gly anolyte during charge-discharge cycle.

Fig. S5. (a) UV-vis spectrum of glycine and Fe²⁺-gly; (b) FTIR of Fe²⁺-gly at 0 and 50%

SOC.

Fig. S6. RDE study of the reduction of (a) $FeCl_2$ (b) Fe^{2+} -cit and (c) Fe^{2+} -gly.

Fig. S7. The calculated solvation energy of various Fe²⁺ solvation structures.

Fig. S8. The long-term CV test for (a) $FeCl_2$ and (b) Fe^{2+} -gly at the scanning rate of 5 mV

s⁻¹ vs. SCE.

Fig. S9. The long-term stability tests of symmetrical cell using $FeCl_2$ and Fe^{2+} -gly after 900 cycles.

Fig. S10. (a) All-iron flow battery setup for charge-discharge tests and (b) voltage profiles.

Fig. S11. The averaged CE and EE of full cell adopting different anolytes.

Fig. S12. The SEM morphologies of carbon felt in Fe²⁺-cit anolyte at different charge/discharge states in different charge-discharge cycles.

Fig. S13. The cycling performance and charge-discharge profile of the full cell adopting

(a) FeCl₂ and (b) Fe²⁺-gly as anolyte at 20 mA cm⁻².

Fig. S14. The membrane morphology of the negative side cycled in different anolytes.

Note: the membranes in both \mbox{FeCl}_2 and $\mbox{Fe}^{2+}\mbox{-gly}$ anolytes were contaminated by iron

oxides, whereas in Fe²⁺-cit the membrane was uncontaminated.

Fig. S15 The charge-discharge profiles and cycling performance of the flow cell adopting 1.5 M Fe²⁺-cit.

Table S1. Diffusion constants obtained by Levich plot						
Diffusion constant / cm ² s ⁻¹						
2.3 × 10 ⁻⁸						
5.2 × 10 ⁻⁸						
$3.7 imes10^{-8}$						

Table S1 Diffusion constants obtained by Levich plot

Raw	FeCl ₂ /FeCl ₂ +Ch	Fe ₃ O ₄ /Fe($Fe(acac)_3/$	Fc1N112-TFSI /	Fe(DIPSO) /	[Fe(TEOA)OH] ⁻ /	[Fe(cit) ₂] ⁶⁻ / Fe ²⁺
material	CI+EG [22]	CN) ₆ ^{4- [23]}	Fe ^{2+ [24]}	Fe(acac) ₃ ^[25]	Fe(CN) ₆ ^{4- [26]}	Fe(CN) ₆ ^{4- [34]}	
Cost / \$ kg ⁻¹	23	22	652	535	200	42	19
Anode	69.7	5.4	13.4	2.7	2.7	5.4	80**
capacity /							
Ah L ⁻¹							
Cycle life	16*	150	100	100	25	110	300

Table S2. Comparation with other all-iron RFBs

Note *: The data was obtained the charge-discharge cycles utilizing 0.5:1:4 FeCl₂:ChCl:EG.

**: The data was the available capacity corresponding to the $[Fe(cit)_2]^{6-}$ maximum solubility of 1.5 M.