Hierarchical Microsphere MOF Arrays with Ultralow Ir Doping for Efficient Hydrogen Evolution Coupled with Hydrazine Oxidation in Seawater

Xuejun Zhai ^{a,c}, Qingping Yu ^{a,d}, Guishan Liu ^{a,c}, Junlu Bi ^{a,d}, Yu Zhang ^{a,d}, Jingqi Chi ^{a,b*}, Jianping Lai ^{a,d}, Bo Yang ^c, Lei Wang ^{a,c,d*}

^a Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, PR China.

^b College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

^c College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

^d College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

*E-mail: chijingqi@qust.edu.cn; inorchemwl@126.com

Fig. S1 Photos of (a) NF and (b) MIL-(IrNiFe)@NF.

Fig. S2 (a, b) SEM images of MIL-(NiFe)@NF.

Fig. S3 (a, b) SEM images of MIL-(Fe)@NF.

Fig. S4 (a, b) TEM image of MIL-(NiFe)@NF.

Fig. S5 (a, b) TEM images of MIL-(Fe)@NF.

Fig. S6 EDX of MIL-(IrNiFe)@NF catalyst.

Fig. S7 XRD patterns of (a)MIL-(NiFe)@NF and (b) MIL-(Fe)@NF.

Fig. S8 Mass specific activity of (a) HER and (b) OER.

Fig. S9 SEM image of MIL-(IrNiFe)@NF after stability test for OER.

Fig. S10 SEM image of MIL-(IrNiFe)@NF after stability test for HER.

Fig. S11 (a) Ir 4f spectra, (b) Fe 2p spectra, and (c) Ni 2p spectra of MIL-

(IrNiFe)@NF after stability test for HER.

Fig. S12 (a) Ir 4f spectra, (b) Fe 2p spectra, and (c) Ni 2p spectra of MIL-

(IrNiFe)@NF after stability test for HzOR.

	j ŋ		Electrolyte	
Electrocatalysts	(mA cm ⁻²)	(mV)	solution	Keis.
MIL-(IrNiFe)@NF	10	12	1.0 M KOH	This work
MIL-53(Ru-NiFe)@NF	10	27	1.0 M KOH	1
NiFe-MOF/NF	10	134	1.0 M KOH	2
NFN-MOF/NF	10	87	1.0 M KOH	3
MNF-MOFs/NF	10	79	1.0 M KOH	4
NiFe/NiCo2O4/NF	10	270	1.0 M KOH	5 6
S-NiFe2O4/NF	10	138	1.0 M KOH	
Ni3FeN/r-GO-NF	10	94	1.0 M KOH	7
Ni-Co-P HNBs on NF	10	107	1.0 M KOH	8
FeMnP/GNF	10	84	1.0 M KOH	9
CoFePO@NF	10	87.5	1.0 M KOH	10
MoS ₂ -Ni ₃ S ₂ HNRs/ NF	10	98	1.0 M KOH	11
FeSe ₂ /NF	10	178	1.0 M KOH	12
FeB ₂ -NF	10	69	1.0 M KOH	13

Table S1. Comparison of HER activity between MIL-(IrNiFe)@NF and recentlyreported MOF-based electrocatalysts in a wide pH range.

Electro estelusta	j	j η Electrolyte			
Electrocatalysis	(mA cm ⁻²)	(mV)	solution	Keis.	
MIL-(IrNiFe)@NF	50	230	1.0 M KOH	This work	
MIL-53(Ru-NiFe)@NF	50	210	1.0 M KOH	1	
NiFe-MOF/NF	10	240	1.0 M KOH	2	
NFN-MOF/NF	10	240	1.0 M KOH	3	
MNF-MOFs/NF	50	235	1.0 M KOH	4	
NiFe/NiCo2O4/NF	60	270	1.0 M KOH	5	
S-NiFe2O4/NF	10	267	1.0 M KOH	6	
Ni3FeN/r-GO-NF	10	270	1.0 M KOH	7	
Ni-Co-P HNBs on NF	10	270	1.0 M KOH	8	
FeMnP/GNF	10	280	1.0 M KOH	9	
CoFePO@NF	10	274.5	1.0 M KOH	10	
MoS ₂ -Ni ₃ S ₂ HNRs/ NF	10	249	1.0 M KOH	11	
FeSe ₂ /NF	10	245	1.0 M KOH	12	
FeB ₂ -NF	10	296	1.0 M KOH	13	

Table S2. Comparison of OER activity between MIL-(IrNiFe)@NF and recentlyreported MOF-based electrocatalysts in a wide pH range.

Table S3. Comparison of overall water splitting solution performance of MIL-(IrFeNi)@NF and other recently reported electrocatalysts in alkaline seawater. E_{10} and E_{100} are the working voltage at 10 mA cm⁻² and 100 mA cm⁻² in the two-electrode system.

Electropotolysta	<i>E</i> 10	<i>E</i> 100	E100 Electrolyte	
	(V) (V) solution		solution	Keis.
			1.0 M KOH	This
MIL-(IrFeNi)@NF	1.4	1.67	+Seawater+ 0.5	work
			M N ₂ H ₄	
Ni ₂ P-Fe ₂ P/NF	1.56	1.68	1.0 M KOH	14
		1.77	1.0 M KOH +	15
S-(N1,Fe)OOH		1.00	Seawater	
	1.0		1.0 M KOH +	16
Co–Se1//Co–Se4	1.8	1.8	Seawater	
Ni ₃ FeN@C/NF//Ni ₃ N@C/NF		1.69	1.0 M KOH	17

 Table S4. Comparison of overall water splitting coupled with HzOR of MIL

 (IrFeNi)@NF and other recently reported electrocatalysts. E10, E100, and E500 are the

 working potential at 10, 100, and 500 mA cm⁻² in the two-electrode system.

Electrocatalysts	E ₁₀	E_{100}	E 500	Electrolyte	Refs.
	(V)	(V)	(V)	solution	
MIL-(IrFeNi)@NF				1.0 M KOH	This
	0.03	0.15	0.39	+Seawater+ 0.5	I h1s
				M N ₂ H ₄	WORK
Mo-Ni ₃ N/Ni/NF	0.05	0.26		1.0 M KOH +	18
	0.05	0.26		0.1 M N ₂ H ₄	
PW-Co3N NWA/NF	0.029			1.0 M KOH +	19
	0.028			0.1 M N ₂ H ₄	
Fe ₂ O ₃ /ECP-15 FeP/	0.02			1.0 M KOH +	20
ECP-15	0.93			0.1 M N ₂ H ₄	20
Ni ₂ P/NF		1.00	1.00	1.0 M KOH +	21
			1.00	0.1 M N ₂ H ₄	21

References

- M. Zhao, H. Li, W. Li, J. Li, L. Yi, W. Hu and C. M. Li, *Chem-Eur. J.*, 2020, 26, 17091-17096.
- 2 J. Duan, S. Chen and C. Zhao, Nat Commun, 2017, 8, 15341.
- 3 D. Senthil Raja, X.-F. Chuah and S.-Y. Lu, Adv. Energy Mater., 2018, 8, 1801065.
- 4 D. Senthil Raja, H.-W. Lin and S.-Y. Lu, Nano Energy, 2019, 57, 1-13.
- 5 C. Xiao, Y. Li, X. Lu and C. Zhao, Adv. Funct. Mater., 2016, 26, 3515-3523.
- 6 J. Liu, D. Zhu, T. Ling, A. Vasileff and S.-Z. Qiao, Nano Energy, 2017, 40, 264-273.
- 7 Y. Gu, S. Chen, J. Ren, Y. A. Jia, C. Chen, S. Komarneni, D. Yang and X. Yao, *ACS Nano*, 2018, **12**, 245-253.
- 8 E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu and X. W. Lou, *Energy Environ. Sci.*, 2018, 11, 872-880.
- 9 Z. Zhao, D. E. Schipper, A. P. Leitner, H. Thirumalai, J.-H. Chen, L. Xie, F. Qin, M. K. Alam, L. C. Grabow, S. Chen, D. Wang, Z. Ren, Z. Wang, K. H. Whitmire and J. Bao, *Nano Energy*, 2017, **39**, 444-453.
- 10 J. Duan, S. Chen, A. Vasileff and S. Z. Qiao, ACS Nano, 2016, 10, 8738-8745.
- 11 Y. Yang, K. Zhang, H. Lin, X. Li, H. C. Chan, L. Yang and Q. Gao, *ACS Catal.*, 2017, **7**, 2357-2366.
- 12 C. Panda, P. W. Menezes, C. Walter, S. Yao, M. E. Miehlich, V. Gutkin, K. Meyer

and M. Driess, Angew. Chem. Int. Ed., 2017, 56, 10506-10510.

- 13 H. Li, P. Wen, Q. Li, C. Dun, J. Xing, C. Lu, S. Adhikari, L. Jiang, D. L. Carroll and S. M. Geyer, Adv. Energy Mater., 2017, 7, 1700513.
- L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo, A. Karim, S. Chen and Z. Ren, *Adv. Funct. Mater*, 2020, **31**, 2006484.
- L. Yu, L. Wu, B. McElhenny, S. Song, D. Luo, F. Zhang, Y. Yu, S. Chen and Z. Ren, *Energy Environ. Sci.*, 2020, **13**, 3439-3446.
- Y. Zhao, B. Jin, Y. Zheng, H. Jin, Y. Jiao and S. Z. Qiao, *Adv. Energy Mater*, 2019, 1901333.
- B. Wang, M. Lu, D. Chen, Q. Zhang, W. Wang, Y. Kang, Z. Fang, G. Pang and S. Feng, J. Mater. Chem. A, 2021, 9, 13562-13569.
- Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li and G. Zhang, *Adv. Funct. Mater.*, 2021, **31**, 2103673.
- Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li, Y. Zhu and G. Zhang, *Nat. Commun.*, 2020, 11, 1853.
- Y. Wang, Z. Chen, H. Wu, F. Xiao, E. Cao, S. Du, Y. Wu and Z. Ren, ACS Sustain. Chem. Eng., 2018, 6, 15727-15736.
- C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A. M. Asiri and X. Sun, *Angew. Chem. Int. Ed.*, 2017, 56, 842-846.