Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information for

Self-driven dual hydrogen production system based on bifunctional singleatomic Rh catalyst

Xianyun Peng^{1,2}, Yuying Mi², Xijun Liu^{1,2*}, Jiaqiang Sun³, Yuan Qiu², Shusheng Zhang⁴, Xiaoxing Ke⁵,

Xinzhong Wang^{1*}, and Jun Luo^{2*}

- ¹ Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
- ² School of Materials Science and Engineering, Tianjin Key Lab of Photoelectric Materials & Devices, Tianjin University of Technology, Tianjin 300384, China.
- ³ State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
- ⁴ College of Chemistry, Zhengzhou University, Zhengzhou 450000, China.
- ⁵ Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
- * e-mail: xjliu@tjut.edu.cn (X.J.L.), wangxz@sziit.com.cn (X.Z.W.), jluo@email.tjut.edu.cn (J.L.)

Experimental Section

Synthesis of Rh-SA/Ti₃C₂O_x

To synthesize the Rh-SA/Ti₃C₂O_x, 1 g of lithium fluoride (LiF) powder was added to 10 mL of 9 M HCl solution. The mixture was stirred for 5 min with a magnetic Teflon stir bar to dissolve the salt. 1 g of Ti₃AlC₂ powder was slowly and carefully added to the above mixture over 0.5 h to avoid initial overheating of the solution as a result of the exothermic nature of the reactions. Subsequently, 1 mL of 1 mg mL⁻¹ freshly prepared rhodium chloride hydrate (RhCl₃·xH₂O) solution was added to the solution. The reaction mixture was held at 35 °C in a water bath for 24 h, after which the mixture was washed with deionized water several times by centrifugation until the pH of the supernatant reached approximately 6. The collected sediments from the last centrifugation were dispersed in 50 mL deionized water. The mixture was vigorously ultrasonicated for 1 h under a flowing Ar atmosphere in an ice bath to minimize oxidation. After that, the solution was centrifuged at 3500 rpm for 1 h and the dark-green supernatant was collected. Thereafter, the colloidal suspension (50 mL) was mixed with 50 ml KOH solutions (10 wt%) in the presence of Ar atmosphere for 4 h at room temperature. Then, the alkalization mixture was obtained by washing with deionized water by centrifugation and freeze-drying. Finally, the Rh-SA/Ti₃C₂O_x was obtained by annealing the freeze-dried product at 350° C for 5 h at a heating rate of 5°C min⁻¹ in a tube furnace under an Ar atmosphere (50 sccm).

Synthesis of Ti₃C₂O_x

The $Ti_3C_2O_x$ was prepared using a similar procedure to the one described above for Rh-SA/ $Ti_3C_2O_x$, except that no Rh precursor was added.

Synthesis of Rh-NP/Ti₃C₂O_x

For the synthesis of Rh-NP/Ti₃C₂O_x, 50 mg of Ti₃C₂O_x was firstly dissolved in 50 mL of water in a roundbottom flask, then sonicated for 30 min to obtain a uniform dispersion. Then, 5 mL of 1 mg mL⁻¹ RhCl₃·*x*H₂O aqueous solution was added into the above Ti₃C₂O_x solution gently, with electromagnetic stirring for 30 min. Then, 50 mg of sodium borohydride (NaBH₄) dissolved in 1 ml of 2 M NaOH solution was quickly added into the above resultant mixture under vigorous stirring 2 h and then ultrasonic treatment 2 h at 0 °C using an ice bath under a flowing Ar atmosphere. Subsequently, the resulting solution was washed with deionized water by centrifugation. Finally, the Rh-NP/Ti₃C₂O_x composite was obtained by freeze-drying.

Materials Characterization

X-ray diffraction (XRD) patterns of the samples were obtained by a Rigaku D/max 2500 X-ray diffractometer with a Cu K α radiation source (λ = 0.154598 nm). The morphology and structure of the samples were characterized by using transmission electron microscopy (TEM, Talos F200X) equipped with energydispersive X-ray spectroscopy (EDS). High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images were taken using an FEI Titan Cubed G2 microscope equipped with a probe corrector operated at 300 kV. Inductively coupled plasma atomic emission spectroscopy (ICP-OES) analysis was recorded on a Thermo iCAP RQ instrument. N₂ adsorption/desorption isotherms were measured on a Tristar II 3020 Micromeritics analyzer. Pore volumes and sizes were computed by a quenched solid DFT method, and specific surface areas were discerned by the Brunauer–Emmett–Teller (BET) method. Atomic force microscopy (AFM) images were collected in tapping mode under ambient atmosphere using a Bruker microscope (Dimension icon) and processed with NanoScope Analysis software.

X-ray absorption data collection, analysis, and modeling

X-ray absorption fine structure spectroscopy (XAFS) measurements were carried out at the BL14W1 station in Shanghai Synchrotron Radiation Facility (SSRF, 3.5 GeV, 250 mA maximum, Si(311) double crystals). The Rh *K*-edge spectra of the Rh-SA/Ti₃C₂O_x catalysts were collected in fluorescent mode using a seven-element Ge detector. Reference spectra were recorded in transmission mode using an ionization chamber. The raw data were then background-subtracted, normalized, and Fourier-transformed by the standard procedures with the ATHENA program. The least-squares curve fitting analysis was carried out using the ARTEMIS program. The data were fitted in *R*-space with theoretical models constructed on the basis of the crystal structure derived from XRD or DFT optimization.

Electrode Preparations

The preparation of the working electrodes containing the investigated catalysts can be found as follows: the rotating disk electrode (RDE, 0.19625 cm²) was polished with alumina slurry and rinsed with distilled water before and after the catalyst was loaded on the disk. The catalyst ink was prepared by mixing 6 mg of catalyst powder, 0.5 ml of Nafion (0.05 wt.%) solution, and 0.5 ml of absolute ethyl alcohol. The mixed solution was sonicated for 1 h to form homogeneous catalytic ink. Finally, 20 μ L of the catalyst ink was dropped on the glassy carbon electrode. After dried at ambient conditions, the catalyst with a content of 0.12 mg was loaded on the working electrode. As a comparison, commercial Pt/C (20 wt.%) catalyst ink was also prepared with the same method.

Electrochemical Measurements

The electrochemical measurements were carried out on the CHI 760E workstation (CH Instruments, Inc.) with a Pine rotating disk electrode system (Pins Instruments Co. Ltd.). A typical three-electrode system was employed for all of the electrochemical measurements, using a glass carbon rotating disk electrode covered by catalyst as the working electrode. A graphite rod was used as the counter electrode. An Ag/AgCl electrode saturated with KCl solution was used as the reference electrode for HER, while Hg/HgO electrode was used for HzOR. For HER, 0.1 M H₂SO₄, 1 M PBS, and 0.1 M KOH solutions were chosen as electrolytes, while 0.1 M KOH + 0.1 M N₂H₄ solution was used as the HzOR electrolyte. For HER and HzOR tests in the three-electrode system, the mass loading of the catalyst was controlled as 0.12 mg. Before all electrochemical measurements, the electrolyte was degassed for 30 min in advance with a high-purity Ar (99.999%), and a continuous flow of Ar was maintained throughout all the tests.

The recorded current density corresponds to the geometric surface area of the rotating disk electrode. All measured potentials were calibrated by 90% *iR*-compensation and adjusted to the reversible hydrogen electrode (RHE) according to the Nernst equation potential:

E (V vs RHE) = E (V vs Ag/AgCl) + 0.0591 × pH + 0.197

$$E$$
 (V vs RHE) = E (V vs Hg/HgO) + 0.059 × pH + 0.098

The hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) activity were evaluated by using linear sweep voltammetry (LSV) with a sweep rate of 10 mV s⁻¹. The scan rate was 50 mV s⁻¹ for long-term cyclic voltammetry (CV) tests. The long-term stability was tested at controlled current densities.

All the electrochemical measurements for overall hydrazine splitting (OHzS) were performed at 25 °C in a two-electrode system powered by CHI 760E electrochemical workstation with 1 M KOH + 0.1 M N₂H₄ electrolyte. The cathode chamber and anode chamber were separated by a Nafion membrane. For each pair of OHzS electrodes, the anode and the cathode were prepared by dropping the catalyst ink on carbon paper.

The electrochemical impedance spectroscopy (EIS) measurements were performed in the frequency range from 0.1 Hz to 100 kHz with an AC amplitude of 5 mV. The electrochemically active surface area (ECSA) could be examined through the electrochemical double-layer capacitance (C_{dl}). The C_{dl} can be evaluated by cyclic voltammetry in a non-Faradaic region at various scan rates. Accordingly, a series of CV measurements were conducted with 10 mV s⁻¹, 20 mV s⁻¹, 30 mV s⁻¹, 40 mV s⁻¹, and 50 mV s⁻¹ in 0.1 to 0.2 V vs RHE. The double-layer capacitance values were determined from the slope of the capacitive current versus scan rate.

The current density normalized by electrochemical active surface area was calculated using the following equation:

$$J_{\text{ECSA}} = I / S_{\text{ECSA}}$$

where J_{ECSA} is the current density normalised by ECSA (mA cm⁻²), *I* is the current (mA), $S_{\text{ECSA}} = C_{dl} / C_s$ ($C_s = 0.035 \text{ mF cm}^{-2}$).

Determine H₂ Faradaic Efficiency

The experimental amounts of H_2 evolved from the cathode during the hydrogen evolution reaction could be measured by the drainage gas collection method. The theoretical volume of H_2 was calculated from the following relationships:

$$V_{\rm H2}$$
 (mL) = $Q \times 22.4 \text{ L mol}^{-1} \times 1000 / (F \times 2)$

where Q is the cumulative charge (C), F is the Faraday constant (96,485 C mol⁻¹).

The Faradic efficiency (FE) was calculated using the following equation:

$$FE = \frac{Experimental \ \mu mol \ of \ gas}{Theoretical \ \mu mol \ of \ gas} \times 100\%$$

As for the theoretical quantity, the efficiency of the current produced by the reactions was assumed to be 100 %, which in turn assumes that HER is the only reaction that takes place on the respective electrode.

Determine N₂H₄ decomposition

To determine whether hydrazine decomposes to form the mixture products of N₂ and H₂ (N₂H₄ \rightarrow N₂ + 2H₂) in alkaline solution, the gas products in the control experiments were collected and analyzed by an online gas chromatograph. The control experiment was performed as the following: Firstly, approximately 10 mg of the as-prepared catalyst was added into a three-necked round bottom flask. The 1 M KOH + 0.1 M N₂H₄ aqueous solution was rapidly injected into the flask with magnetic stirring. A stream of Ar continues to flow through the flask to bring the possible gas products into the gas chromatograph for the qualitative analysis.

TOF Calculations

The turnover frequency (TOF) calculation values of the designed catalysts were measured and calculated according to the following equation:

$$TOF = \frac{j}{z \times F \times n}$$

where *j* is the HER current density (A cm⁻²) during the LSV measurement in 0.1 M H₂SO₄ solutions, *z* represents the electron number per mol involved to generate a mole of H₂ (*z* = 2) in HER. F is the Faraday constant (96,485 C mol⁻¹), and *n* is the number of active sites.

The *n* values can be approximately estimated by CV measurements carried out in 1 M PBS electrolyte (pH = 7) with a scan rate of 50 mV s⁻¹ at the potential window from -0.2 to 0.6 V vs. RHE for HER. After this, by integrating the charge of each CV curve over the whole potential range, the half value of the charge was obtained, which is the value of the surface charge density (Q_s). Then, the *n* value was computed by $n = Q_s/F$.

Assembly and Tests of Zn-H₂ Battery

The asymmetric Zn-H₂ battery was assembled of carbon paper ($1 \times 1 \text{ cm}^2$) supported Rh-SA/Ti₃C₂O_x with a mass loading of 1 mg cm⁻² as the cathode, A polished Zn plate as the anode, and 2.0 M H₂SO₄ and 4.0 M NaOH as the catholyte and anolyte, respectively. A bipolar membrane (BPM) was used as a separator for preventing bulk neutralization of acidic catholyte and alkaline anolyte. For comparison, the commercial 20 wt% Pt/C catalysts were also measured under the same conditions. The polarization curve measurements were performed by LSV at 10 mV s⁻¹. The rate discharging curves and long-time durability test were collected by the electrochemical workstation testing system. Both the current density and power density were normalized to the geometric area of the cathode. For galvanostatic discharge results, the specific capacity (*C*) and energy density (*E*) were calculated as follows:

$$C = I \times t/m$$
$$E = I \times V \times t/m$$

where *I* is the applied current, *V* is the average discharge voltage, *t* is the service hours, and *m* is the weight of the consumed Zn plate.

Calculation of Theoretical Potential of the Zn-H₂ battery

When discharging, the reaction pathways of the acid-alkaline $Zn-H_2$ battery can be expressed as follows according to the Nernst equation:

Hydrogen evolution reaction at the cathode $(2.0 \text{ M H}_2\text{SO}_4)$:

 $2H^+ + 2e^- \rightarrow H_2$

$$E_{c} = E_{H^{+}/H_{2}}^{\theta} + 2.303 \frac{RT}{2F} log \left[\frac{\alpha_{H_{2}}}{(\alpha_{H^{+}})^{2}} \right] = 0 V + 0.059 \times log \left(\alpha_{H^{+}}^{\theta} \right) = 0.035 V$$

where $E_{H^+/H_2}^{\theta} = 0 V vs SHE$.

Oxidation of Zn at the anode (4.0 M NaOH):

 $Zn - 2e^- + 2OH^- \rightarrow H_2O + ZnO$

$$E_{a} = E_{\frac{Zn^{2} + 1}{Zn}} - 2.303 \frac{RT}{2F} log[(\alpha_{OH}^{-})^{2}] = -1.249 V - 0.059 \times log(\alpha_{OH}^{-}) = -1.285 V$$

where $E_{Zn^{2+}/Zn}^{\theta} = -1.249 V vs SHE$.

The overall reaction:

 $Zn + 2H^+ + 2OH^- \rightarrow H_2 + H_2O + ZnO$

The theoretical electromotive force (E_{emf}) of the battery could be:

$$\begin{split} E_{emf} &= E_c - E_a \\ &= E_{\frac{H^+}{H_2}}^{-} - 2.303 \frac{RT}{2F} log \left[\frac{\alpha_{H_2}}{(\alpha_{H^+})^2} \right] - \left\{ E_{\frac{Zn^2 +}{Zn}}^{-} - 2.303 \frac{RT}{4F} log \left[(\alpha_{OH^-})^2 \right] \right\} \\ &= E_{\frac{H^+}{H_2}}^{-} - E_{\frac{Zn^2 +}{Zn}}^{-} + 0.059 \times \left[log \left(\alpha_{H^+} \right) + log \left(\alpha_{OH^-} \right) \right] = 1.32 V \end{split}$$

where *R* is the gas constant (8.314 J mol⁻¹ K⁻¹), F is the faraday constant (96,485 C mol⁻¹), T is 298.15 K, and α is the corresponding activity.

Calculation of Theoretical Energy Density of the Zn-H₂ battery

The theoretical energy density of the Zn-H₂ battery could be:

$$ED_{theo} = C_{theo}V_{cell} = 820 \text{ mAh } g^{-1} \times 1.32 \text{ V} = 1082.4 \text{ Wh } kg^{-1}$$

where C_{Zn} is the theoretical capacity of the battery based on Zn anode.

Assembly and Tests of Self-Powered Dual Hydrogen Production System

The self-powered dual hydrogen production system was consisted of integrating a $Zn-H_2$ battery using Rh-SA/Ti₃C₂O_x cathode and Zn plate as the anode to drive OHzS for H₂ production. In this system, hydrogen could be generated simultaneously from two pathways: the cathode of the Zn-H₂ unit and the cathode of the OHzS. The experimental amounts of H₂ evolved from the cathode during the hydrogen evolution reaction could be measured by the drainage gas collection method.

Computational Details

All calculations were performed with dispersion-corrected DFT in the DMol³ code. The starting models of pristine MXene Ti₃C₂ were constructed conventionally by removing Al sheets from the parent MAX phase Ti₃AlC₂. The two-dimension material consists of five (Ti₃C₂) atomic sheets with a hexagonal-like unit cell. The atomic models of the functionalized MXenes were designed assuming their complete surface termination by oxygen atoms. The periodic system had a vacuum thickness of 15 Å, which was used to eliminate spurious interactions between the adsorbate and the periodic image of the bottom layer of the surface. All the computations were performed with spin-polarized DFT implemented in the DMol³ code of the Materials Studio. A generalized gradient approximation (GGA) with the Perdew, Burke, and Ernzerhof (PBE) exchangecorrelation functionals was employed. The double numerical plus polarization (DNP) was used as the basis set. Effective core potentials were adopted as the core treatment to conduct a metal relativistic effect. The geometry convergence tolerance for energy change was 1×10^{-6} Ha, the max force was 0.002 Ha/Å, and the max displacement was 0.005 Å. We chose 5.2 Å to be the real-space global orbital cutoff radius. The structural optimization was performed without any constraints. The Gibbs free energy change (ΔG) of each elemental step was calculated according to the CHE model, which used one-half of the chemical potential of hydrogen as the chemical potential of the proton-electron pairs. ΔG was calculated by the equation: ΔG = ΔE + ΔE_{ZPE} + ΔG_U - $T\Delta S$, where ΔE is the electronic energy difference directly obtained from DFT

calculations, ΔE_{ZPE} is the zero-point energy, T is the temperature (T = 298.15 K), ΔS is the change in entropy,

and ΔG_U is the free energy contributions related to the applied electrode potential U.

Supplementary Figures

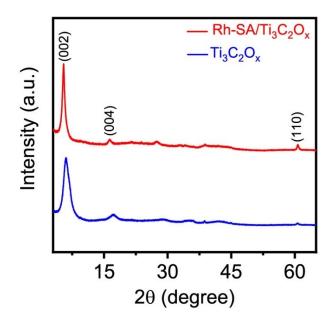


Figure S1. XRD patterns of the as-prepared Rh-SA/Ti $_3C_2O_x$ and Ti $_3C_2O_x$ samples.

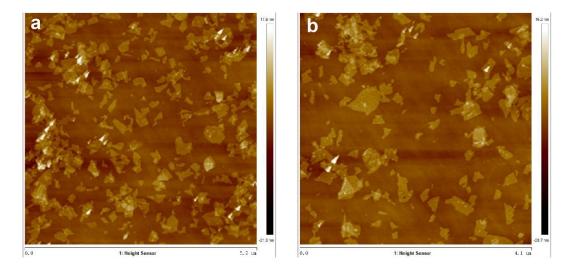
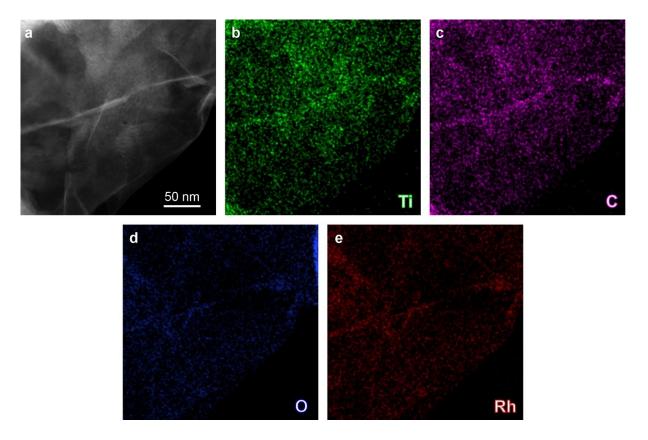



Figure S2. The additional AFM images of the as-prepared Rh-SA/Ti $_3C_2O_x$ sample.

Figure S3. The EDS mapping characterization of the as-prepared Rh-SA/Ti₃C₂O_x sample. (a) HAADF-STEM image, (b-e) the corresponding EDS element mapping. From the HAADF-STEM image, the Rh nanoclusters or nanoparticles cannot be observed. The EDS elemental mapping confirms the homogeneous distribution of these elements in the composite.

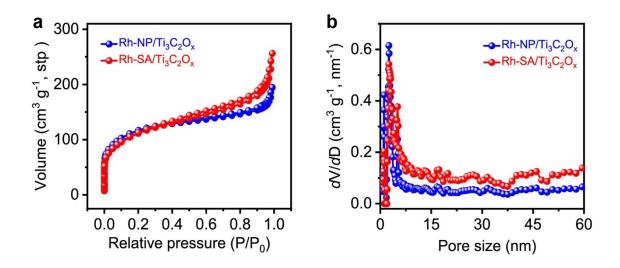


Figure S4. The BET measurements of the as-prepared Rh-NP/Ti₃C₂O_x and Rh-SA/Ti₃C₂O_x samples. (a) N₂ adsorption/desorption isotherm curves. (b) The corresponding pore size distribution. The pore structure and specific surface areas properties of the as-prepared samples were characterized by N₂ adsorption/desorption measurements. As result, the as-synthesized Rh-SA/Ti₃C₂O_x nanosheets possess a specific surface area of 441.81 m² g⁻¹ with a pore volume of 0.333 cm³ g⁻¹. Moreover, the Rh-SA/Ti₃C₂O_x sample showed a prominent pore size distribution around 2.5 nm. Besides, Rh-NP/Ti₃C₂O_x (Specific surface areas: 416.61 m² g⁻¹; Pore volume: 0.397 cm³ g⁻¹; Prominent pore size: 2.5 nm) exhibited a similar pore structure and specific surface areas properties to that of Rh-SA/Ti₃C₂O_x, which provides higher comparability for the electrochemical performance comparison of Rh-SA/Ti₃C₂O_x and Rh-SA/Ti₃C₂O_x.

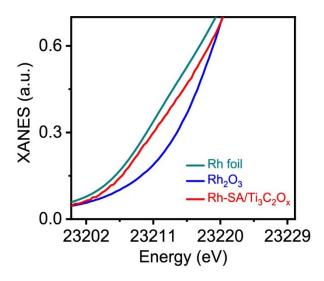


Figure S5. The detailed view of Rh *K*-edge XANES curves of Rh-SA/Ti₃C₂O_x, as well as Rh foil and Rh₂O₃ references. Clearly, the absorption edge position of the white line for Rh-SA/Ti₃C₂O_x was located between those of Rh foil and Rh₂O₃, indicating that the valence state of Rh single atoms is situated between that of Rh⁰ and Rh⁺³.

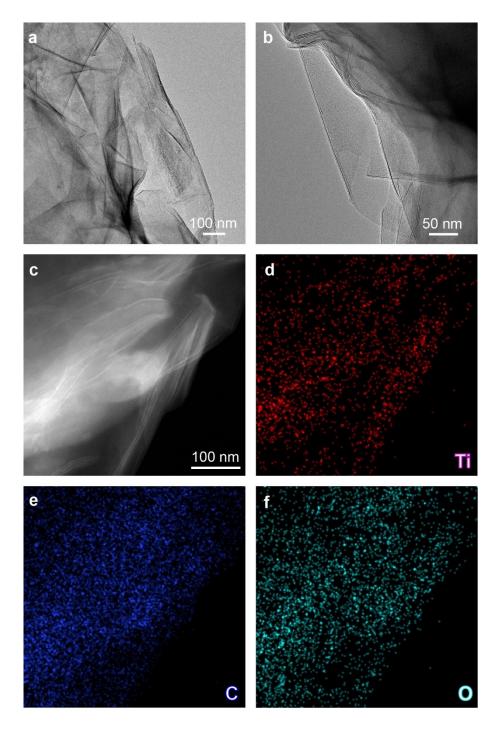
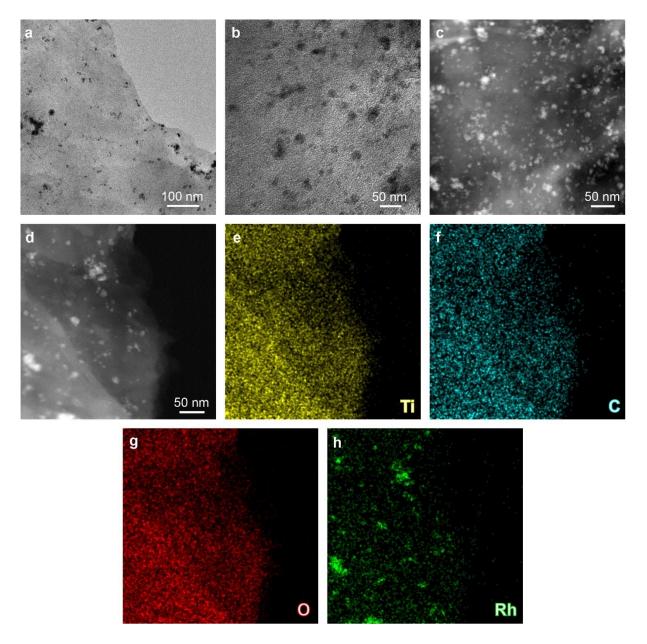



Figure S6. The morphology and EDS mapping characterizations of the as-prepared $Ti_3C_2O_x$ sample. (a,b) TEM images. (c) HAADF-STEM image. (d-f) EDS element mapping corresponding to (c). From the TEM images, the $Ti_3C_2O_x$ displayed ultrathin nanosheet morphology with a few layers. The EDS elemental mapping confirms the homogeneous distribution of these elements in the composite.

Figure S7. The morphology and EDS mapping characterizations of the as-prepared Rh-NP/Ti₃C₂O_x sample. (a,b) TEM images. (c,d) HAADF-STEM images. (e–h) EDS element mapping corresponding to (d). From the TEM images, the Rh nanoparticles can be clearly observed. The EDS elemental mapping confirms the homogeneous distribution of these elements in the composite. The Rh loading was determined to be 3.75 wt.% by ICP-OES analysis.

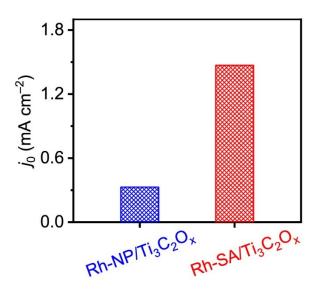
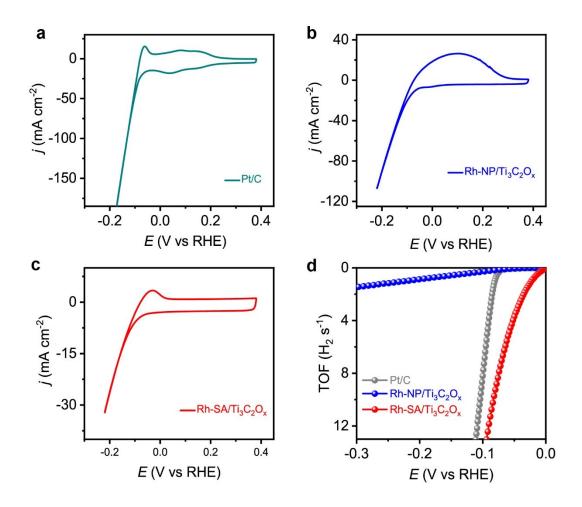



Figure S8. The exchange current densities (j_0) of the Rh-NP/Ti₃C₂O_x and Rh-SA/Ti₃C₂O_x catalysts. As shown, the value of j_0 of the Rh-SA/Ti₃C₂O_x catalyst was 1.57 mA cm⁻², which was much higher than Rh-NP/Ti₃C₂O_x (0.33 mA cm⁻²) and those of most previously reported HER electrocatalysts (**Table S3**, Supporting Information)), suggesting a more rapid HER rate and an additional kinetic advantage for Rh-SA/Ti₃C₂O_x.

Figure S9. Determination of active sites and TOF values for HER. (a) HER CV curves of Pt/C. (b) HER CV curves of Rh-NP/Ti₃C₂O_x. (c) HER CV curves of Rh-SA/Ti₃C₂O_x. (d) TOF plots for HER.

By the curves in (a) here (see more details in Methods), the Q_s values of Pt/C, Rh-NP/Ti₃C₂O_x, and Rh-SA/Ti₃C₂O_x were measured to be 3.986×10^{-2} , 4.568×10^{-2} , and 0.971×10^{-3} C cm⁻², respectively. Thus, their corresponding *n* values under HER conditions were calculated to be 4.131×10^{-8} , 4.766×10^{-8} , and 1.006×10^{-8} mol cm⁻², respectively. Based on the above results, the TOF values were calculated and plotted in **d**. As shown, Rh-SA/Ti₃C₂O_x exhibited a larger TOF value, indicating its higher intrinsic activity than those of the counterparts.

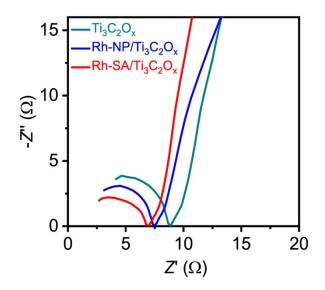
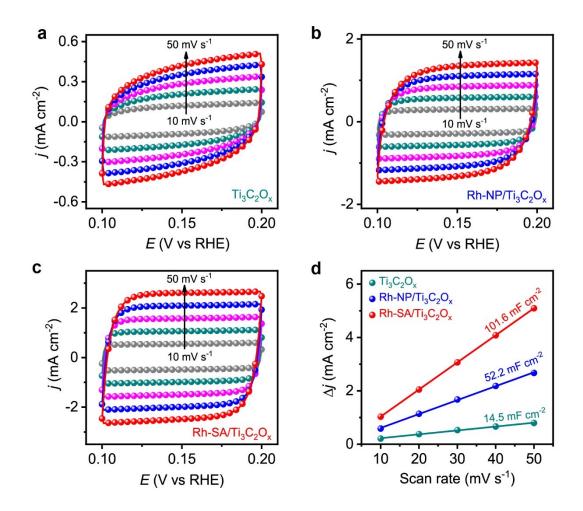



Figure S10. Nyquist plots of the $Ti_3C_2O_x$, Rh-NP/ $Ti_3C_2O_x$, and Rh-SA/ $Ti_3C_2O_x$ electrodes.

Figure S11. The determination of C_{dl} **.** (a–c), CV curves of Ti₃C₂O_x in (a) and Rh-NP/Ti₃C₂O_x in (b) and Rh-SA/Ti₃C₂O_x in c, which has been measured in 0.1 M H₂SO₄ aqueous electrolyte with various scan rates of 10, 20, 30, 40, and 50 mV s⁻¹ in the non-faradaic region. (d) The capacitive current densities as a function of scan rate for the different catalysts.

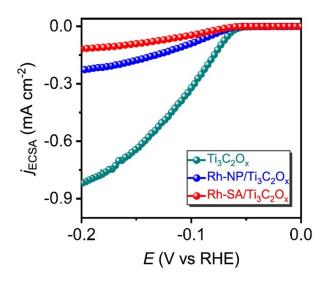
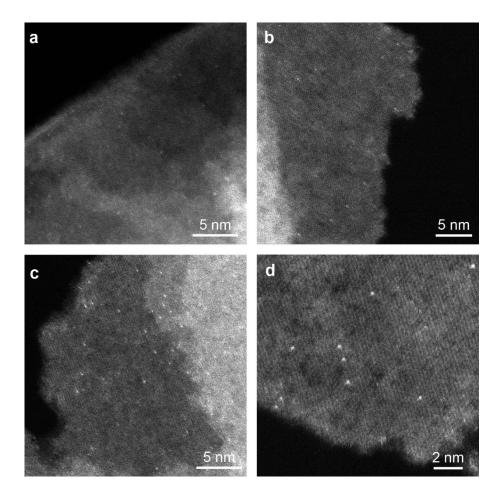



Figure S12. ECSA normalized polarization curves recorded at a scan rate of 10 mV s⁻¹ in 0.1 M H_2SO_4 aqueous solution.

Figure S13. The atomic-resolution HAADF-STEM images of Rh-SA/Ti₃C₂O_x after HER stability test with **5,000 continuous cyclic voltammetry cycles.** These images were taken from randomly selected regions of the sample. As seen, no clusters and particles could be observed on the surface of the Rh-SA/Ti₃C₂O_x nanosheets after the stability test, further excluding the possible formation of Rh nanoclusters or nanoparticles, confirming its robust structural stability during the HER process.

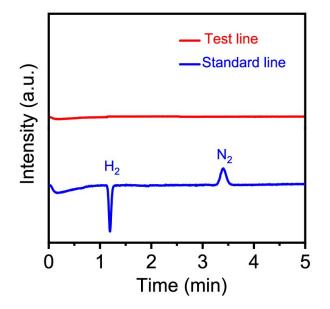


Figure S14. The control experiments for determining the possible gas products from the direct N_2H_4 decomposition. The blue curve is the standard line containing N_2 and H_2 , and the red curve is the test line of the control experiment. As shown, no N_2 and H_2 were detected in the control experiment, confirming the Rh-SA/Ti₃C₂O_x catalyst cannot catalyze the direct decomposition of hydrazine in alkaline solution.

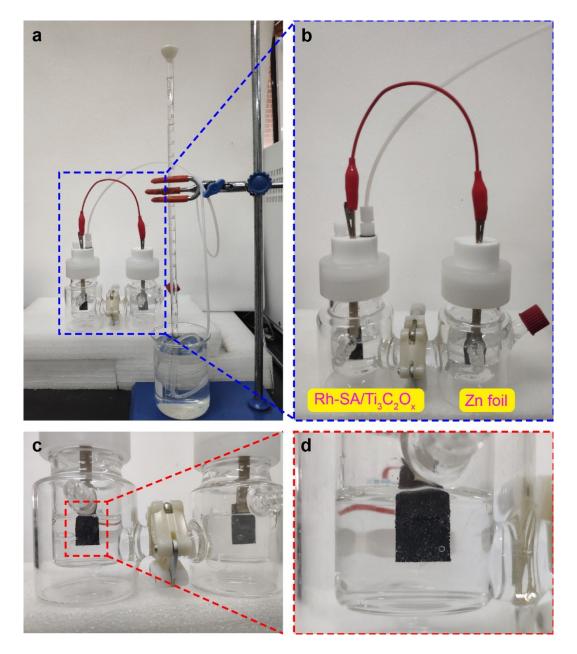
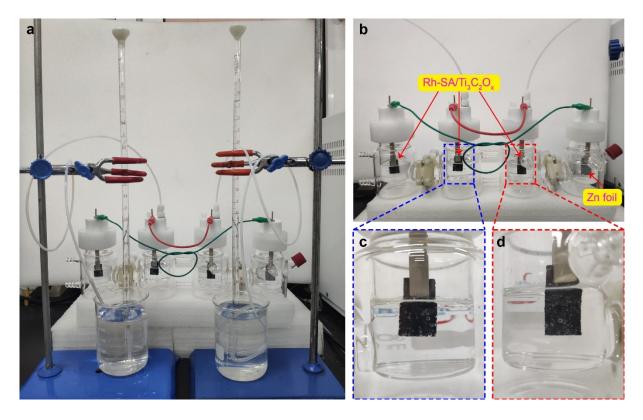



Figure S15. The digital photograph of the homemade gas collection device for the $Zn-H_2$ battery system.

The enlarged view in (d) displayed the generated hydrogen bubbles over the $Rh-SA/Ti_3C_2O_x$ electrode.

Figure S16. The digital photograph of the homemade gas collection device for the self-powered dual **hydrogen production system.** The enlarged view in (c) and (d) displayed the generated hydrogen bubbles over the cathode of the OHzS (c) and the Zn-H₂ battery (d), respectively.

Supplementary Tables

Table S1. The structural parameters extracted from the Rh K-edge EXAFS fitting for the Rh-SA/Ti₃C₂O_x sample.

Sample	Bond type	N	<i>R</i> (Å)	σ²(10 ⁻³ Ų)	Δ <i>E</i> ₀(eV)	R factor
	Rh-O	3	2.07 ± 0.05	0.0054	-5.477	0.0020
Rh-SA/Ti ₃ C ₂ O _x	Rh-Ti	3	2.13 ± 0.03	-0.0005	-5.477	0.0029

 S_0^2 is the amplitude reduction factor; *N* is the coordination number; *R* is the interatomic distance (the bond length between central atoms and surrounding coordination atoms); σ^2 is Debye-Waller factor (a measure of thermal and static disorder in absorber-scatterer distances); ΔE_0 is an edge-energy shift (the difference between the zero kinetic energy value of the sample and that of the theoretical model). *R* factor is used to value the goodness of the fitting.

Catalysts	Electrolyte	η ₁₀ (mV vs RHE)	<i>Tafel</i> (mV dec⁻¹)	Stability	References
Rh-SA/Ti₃C₂O _x	0.1 M H ₂ SO ₄	23	27.8	24 h + 5,000 CV cycles	This work
B-CoP/CNT	0.5 M H ₂ SO ₄	39	50	100 h	Angew. Chem. Int. Ed. 2020, 59, 4154
CoP/NPC/TF	0.5 M H ₂ SO ₄	91	54	10 h	Adv. Energy Mater. 2019, 9, 1803970
Ce, N-CoP/CC	0.5 M H ₂ SO ₄	66	53	60 h	Sustain. Energy Fuels, 2019, 3, 3344
CeO2/Co4N	0.5 M H ₂ SO ₄	33	65	12 h	Appl. Catal. B-Environ. 2020, 277, 119282
Co@NG/NRGO	0.5 M H ₂ SO ₄	91	62	36 h	Chem. Commun., 2020, 56, 567
Co _{0.31} Mo _{1.69} C/MXene/NC	0.5 M H ₂ SO ₄	81	24	100 h	Adv. Energy Mater. 2019, 9, 1901333
N-Co-S/G	0.5 M H ₂ SO ₄	67.7	56.3	100 h	Nano Energy 2021, 80, 105544
Со-Р@РС-750	0.5 M H ₂ SO ₄	72	49	20 h	Small 2020, 16, 1900550

Table S2. Comparison of the HER performance of Rh-SA/Ti₃C₂O_x with previously electrocatalysts in acidic conditions.

СоР-400	0.5 M H ₂ SO ₄	113	67	70,000 s	Small 2018, 14, 1802824
CoP/Ni₂P@HPNCP	0.5 M H ₂ SO ₄	130	64.91	20 h	Nanoscale, 2020, 12, 23851
CoS ₂ @MoS ₂ @CC-30h	0.5 M H ₂ SO ₄	65	122	20 h	Adv. Mater. Interfaces 2020, 7, 2000780
Cu@WC	0.5 M H ₂ SO ₄	92	50.5	12 h	Appl. Catal. B-Environ. 2021, 280, 119451
Cu _{0.075} Co _{0.925} P/CP	0.5 M H ₂ SO ₄	47	47.2	24 h	J. Mater. Chem. A, 2019, 7, 14271
N _v -Fe ₂ N-350	0.5 M H ₂ SO ₄	54	41.2	50 h	Adv. Mater. 2020, 32, 1904346
FeP/NCNSs	0.5 M H ₂ SO ₄	114	64	20 h	ACS Sustainable Chem. Eng. 2018, 6, 11587
FeP/Ti	0.5 M H ₂ SO ₄	79	58	10 h	Appl. Catal. B-Environ. 2020, 260, 118156
Fe _{0.43} Co _{2.57} (PO ₄) ₂ /Cu	0.5 M H ₂ SO ₄	63.8	42.4	100 h	ACS Sustainable Chem. Eng. 2020, 8, 13793
CoP/CC	0.5 M H ₂ SO ₄	67	51	22.5 h	J. Am. Chem. Soc. 2014, 136, 7587
FeP/C	0.5 M H ₂ SO ₄	71	52	10,000 CV cycles	J. Am. Chem. Soc. 2017, 139, 6669

CoP/CNT	0.5 M H ₂ SO ₄	122	54	18 h	Angew. Chem. Int. Ed. 2014, 53, 6710
Co₂P@N,P-PCN/CNTs	0.5 M H ₂ SO ₄	126	45	25 h	J. Mater. Chem. A 2016, 4, 15501
Co-Ni-P/NF	0.5 M H ₂ SO ₄	68	56.4	40 h	Catal. Today 2017, 287, 122
Co phosphide/phosphate thin film	0.5 M H ₂ SO ₄	150	53	13.9 h	Adv. Mater. 2015, 27, 3175
Urchin-like CoP/GC	0.5 M H ₂ SO ₄	105	46	30 h	Nano Lett. 2015, 15, 7616
Fe-Co₂P/NCNTs	0.5 M H ₂ SO ₄	104	58	16.7 h	ACS Appl. Mater. Interfaces 2016, 8, 13890
CoMoP@C/GC	0.5 M H ₂ SO ₄	41	49.7	24 h	Energy Environ. Sci. 2017, 10, 788
Co₂P nanorods/Ti	0.5 M H ₂ SO ₄	134	71	12 h	Nano Energy 2014, 9, 373
CoPS/GE	0.5 M H ₂ SO ₄	128	57	36 h	Nat. Mater. 2015, 14, 1245
rGO-few layer FePS ₃	0.5 M H ₂ SO ₄	108	54	50 h	ACS Energy Lett. 2016, 1, 367
Se-rich MoSe ₂	0.5 M H ₂ SO ₄	130	46	12 h	ACS Nano 2020, 14, 6295

Mo-WC@NCS	0.5 M H ₂ SO ₄	155	78	12 h	Nano Energy 2020, 74, 104850
CoP NW/Hb	0.5 M H ₂ SO ₄	78	68	14 h	Nano Res. 2017, 10, 1010
Ni-C-N NS	0.5 M H ₂ SO ₄	60.9	32	70 h	J. Am. Chem. Soc. 2016, 138, 14546
C ₃ N ₄ @N-doped graphene	0.5 M H ₂ SO ₄	240	51.5	1,000 CV cycles	Nat. Commun. 2014, 5, 3783
NiCo ₂ P _x /CF	0.5 M H ₂ SO ₄	104	59.6	30 h	Adv. Mater. 2017, 29, 1605502
S-MoO ₂ -2	0.5 M H ₂ SO ₄	176	57	1,000 CV cycles	Nano Res. 2019, 13, 121
MoS ₂ -C ₃ N ₄ -60	0.5 M H ₂ SO ₄	173	53	1,000 CV cycles	J. Catal. 2019, 375, 441
Mo ₂ F _x C _{1-x} /rGO	1 M HClO ₄	95	86	48 h	ACS Sustainable Chem. Eng. 2020, 8, 10284
Mo-Ni₂P/NF	0.5 M H ₂ SO ₄	67	77	24 h	Nanoscale 2017, 9, 16674
MoP/CNT-700	0.5 M H ₂ SO ₄	83	60	40 h	Adv. Funct. Mater. 2018, 28, 1706523

 η_{10} is the overpotential at the current density of –10 mA cm⁻² except those specified else.

Catalysts	Electrolyte	j₀ (mA cm⁻²)	References
Rh-SA/Ti₃C₂O _x	0.1 M H ₂ SO ₄	1.57	This work
Pd⁰/GDY	0.5 M H ₂ SO ₄	0.282	iScience 2019, 11, 31
MoC-Mo2C/PNCDs	1.0 M KOH	0.15	Adv. Mater. 2019, 31, 1900699
MoNi₄	1.0 M KOH	1.24	<u>Nat. Commun</u> . 2017, 8 , 15437
Mo₂C-WC	0.5 M H ₂ SO ₄	0.419	J. Mater. Chem. A, 2017,5, 18494
	1.0 M KOH	0.804	, , , , , , , , , , , , , , , , , , , ,
Ru-SA/Ti ₃ C ₂ T _x	0.1 M HClO ₄	0.06	Small 2020, 6, 2002888
CoP/CC	0.5 M H ₂ SO ₄	0.288	J. Am. Chem. Soc. 2014, 136, 7587
2H Nb _{1.35} S ₂	0.5 M H ₂ SO ₄	~0.8	Nat. Mater. 2019, 18, 1309

Table S3. Comparison of the HER exchange current density (j_0) of Rh-SA/Ti₃C₂O_x with previously electrocatalysts.

PdCu-B2 NWs	0.5 M H ₂ SO ₄	4.7	ACS Energy Lett. 2020, 5, 3672
1% PtW ₆ O ₂₄ /C	0.5 M H ₂ SO ₄	1.65	Nat. Commun. 2020, 11, 490
W ₁ Mo ₁ -NG		1.78	
Mo ₂ -NG	0.5 M H ₂ SO ₄	1.50	Sci. Adv. 2020, 6, eaba6586
W2-NG		0.33	
NG		0.67	
Metallic-phase MoS ₂	0.5 M H ₂ SO ₄	0.1	Nat. Commun. 2016, 7, 10672
Pt _{3.21} Ni@Ti ₃ C ₂	0.1 M KOH	0.9	Small 2019, 15, 1805474
Li _x NiO/Ni	0.5 M H ₂ SO ₄	1.1	J. Am. Chem. Soc. 2020, 142, 12613
a-Ni₃S₂@NPC	0.5 M H ₂ SO ₄	0.492	Nano Energy 2017, 36, 85–94
	1 M KOH	0.786	

2 M PBS

Catalysts	Electrolyte	η ₁₀ (mV vs RHE)	<i>Tafel</i> (mV dec⁻¹)	Stability	References
Rh-SA/Ti₃C₂O _x	0.1 М КОН	29	47.6	24 h	This work
B-CoP/CNT	1 M KOH	56	69	100 h	Angew. Chem. Int. Ed. 2020, 59, 4154
CoP/NPC/TF	1 M KOH	80	50	10 h	Adv. Energy Mater. 2019, 9, 1803970
Ce, N-CoP/CC	1 M KOH	41	43	60 h	Sustain. Energy Fuels, 2019, 3, 3344
CeO ₂ /Co ₄ N	1 M KOH	30	66	15 h	Appl. Catal. B-Environ. 2020, 277, 119282
Co@NG/NRGO	1 M KOH	70	64	36 h	Chem. Commun., 2020, 56, 567
Co _{0.31} Mo _{1.69} C/MXene/NC	1 M KOH	75	43	100 h	Adv. Energy Mater. 2019, 9, 1901333
N-Co-S/G	1 M KOH	74.5	61.9	100 h	Nano Energy 2021, 80, 105544
Co-P@PC-750	1 M KOH	76	52	20 h	Small 2020, 16, 1900550
CoP-400	1 M KOH	154	72	70,000 s	Small 2018, 14, 1802824

Table S4. Comparison of the HER performance of Rh-SA/Ti₃C₂O_x with previously electrocatalysts in alkaline conditions.

CoP/Ni₂P@HPNCP	1 М КОН	121	61.89	20 h	Nanoscale, 2020, 12, 23851
CoS ₂ @MoS ₂ @CC-30h	1 M KOH	87	87	20 h	Adv. Mater. Interfaces 2020, 7, 2000780
Cu@WC	1 M KOH	119	88.7	12 h	Appl. Catal. B-Environ. 2021, 280, 119451
Cu₃N- Cu₃P/NPSCNWs@NF	1 M KOH	68	69	24 h	ChemElectroChem 2020, 7, 289
Cu _{0.075} Co _{0.925} P/CP	1 M KOH	70	55.1	24 h	J. Mater. Chem. A, 2019, 7, 14271
FeP/NCNSs	1 M KOH	205	70	10 h	ACS Sustainable Chem. Eng. 2018, 6, 11587
FeP/Ti	1 M KOH	95	64	-	Appl. Catal. B-Environ. 2020 [,] 260, 118156
Fe _{0.43} Co _{2.57} (PO ₄) ₂ /Cu	1 M KOH	48.9	30.3	100 h	ACS Sustainable Chem. Eng. 2020, 8, 13793
CoP/CC	1 M KOH	209	129	22.5 h	J. Am. Chem. Soc. 2014, 136, 7587
CoP-CC	1 M KOH	95	60	72 h	ChemSusChem 2016, 9, 472
CoFeP/Ti	1 M KOH	78	75	20 h	Adv. Mater. 2017, 29, 1602441

CoFePO/NF	1 М КОН	87.5	38.1	100 h	ACS Nano 2016, 10, 8738
Co-P/NC	1 M KOH	150	51	24 h	Chem. Mater. 2015, 27, 7636
Co₂P/NF	1 M KOH	108	69	10 h	J. Mater. Chem. A 2017, 5, 16580
Co₂P@N,P-PCN/CNTs	1 M KOH	154	52	25 h	J. Mater. Chem. A 2016, 4, 15501
CoMoP@C/GC	1 M KOH	81	55.5	24 h	Energy Environ. Sci. 2017, 10, 788
rGO-few layer FePS ₃	0.5 М КОН	192	-	1,000 CV cycles	ACS Energy Lett. 2016, 1, 367
Ni₃Se₂ nanoforest	1 M KOH	203	79	200 h	Nano Energy 2016, 24, 103
CoSe ₂ /CC	1 M KOH	190	85	12 h	Adv. Mater 2016, 28, 7527
Ni _{0.33} Co _{0.67} S ₂	1 М КОН	88	118	20 h	Adv. Energy Mater. 2015, 5, 1402031
NiMoN film	1 M KOH	109	95	36 h	Adv. Energy Mater. 2016, 6, 1600221
P-Fe ₃ O ₄ /IF	1 M KOH	42	41.09	60 h	Adv. Mater. 2019, 31, 1905107

Co ₆ W ₆ C@NC/CC	1 М КОН	59	45.39	50 h	Small 2020, 16, 1907556
Mo-WC@NCS	1 M KOH	179	81	12 h	Nano Energy 2020, 74, 104850
CoP NW/Hb	1 M KOH	52	88	14 h	Nano Res. 2017, 10, 1010
NiCo ₂ P _x /CF	1 М КОН	58	34.3	30 h	Adv. Mater. 2017, 29, 1605502
Co-Ni-P film	1 М КОН	103	33	10 h	ACS Appl. Mater. Interfaces 2017, 9, 31887
Mo-Ni ₂ P/NF	1 М КОН	78	109	2,500 CV cycles	Nanoscale 2017, 9, 16674
Mo ₂ F _x C _{1-x} /rGO	1 М КОН	138	50	48 h	ACS Sustainable Chem. Eng. 2020, 8, 10284
Mo-Ni₂P/NF	1 М КОН	78	109	2,500 CV cycles	Nanoscale 2017, 9, 16674
MoP/CNT-700	1 M KOH	86	73	40 h	Adv. Funct. Mater. 2018, 28, 1706523

 $\eta_{\scriptscriptstyle 10}$ is the overpotential at the current density of –10 mA cm⁻² except those specified else.

All of the "-" means that no values were reported for the corresponding parameters in the corresponding references.

Catalysts	Electrolyte	η ₁₀ (mV vs RHE)	<i>Tafel</i> (mV dec⁻¹)	Stability	References
Rh-SA/Ti₃C₂O _x	1 M PBS	85	77.4	24 h	This work
B-CoP/CNT	1 M PBS	79	80	100 h	Angew. Chem. Int. Ed. 2020, 59, 4154
Ce, N-CoP/CC	1 M PBS	72	56	60 h	Sustain. Energy Fuels, 2019, 3, 3344
CeO₂/Co₄N	1 M PBS	75	112	40 h	Appl. Catal. B-Environ. 2020, 277, 119282
Co@NG/NRGO	1 M PBS	400	89	40 h	Chem. Commun., 2020, 56, 567
Co _{0.31} Mo _{1.69} C/MXene/NC	0.1 M PBS	126	46	-	Adv. Energy Mater. 2019, 9, 1901333
Co-P@PC-750	1 M PBS	85	58	20 h	Small 2020, 16, 1900550
СоР-400	1 M PBS	161	81	70,000 s	Small 2018, 14, 1802824
CoP/Ni₂P@HPNCP	1 M PBS	141	85.92	20 h	Nanoscale, 2020, 12, 23851

Cu@WC	1 M PBS	173	118.3	12 h	Appl. Catal. B-Environ. 2021, 280, 119451
Cu₃N- Cu₃P/NPSCNWs@NF	1 M PBS	109	124.1	30 h	ChemElectroChem 2020, 7, 289
Cu _{0.075} Co _{0.925} P/CP	1 M PBS	120	97.5	24 h	J. Mater. Chem. A, 2019, 7, 14271
FeP/NCNSs	1 M PBS	409	92	10 h	ACS Sustainable Chem. Eng. 2018, 6, 11587
Fe _{0.43} Co _{2.57} (PO ₄) ₂ /Cu	1 M PBS	53.8	91.5	100 h	ACS Sustainable Chem. Eng. 2020, 8, 13793
CoP/CC	1 M PBS	106	93	1,000 CV cycles	J. Am. Chem. Soc. 2014, 136, 7587
FeP/Ti	1 M PBS	102	-	16 h	ACS Nano 2014, 8, 11101
Fe-O-P NRs	1 M PBS	96	47	60 h	J. Mater. Chem. A 2018, 6, 9467
Mo-WC@NCS	1 M PBS	221	95	12 h	Nano Energy 2020, 74, 104850
CoP NW/Hb	1 M PBS	120	106	100 h	Nano Res. 2017, 10, 1010
Ni-C-N NSs	1 M PBS	92.1	38	70 h	J. Am. Chem. Soc. 2016, 138, 14546

SiO ₂ /PPy NTs-CFs	1 M PBS	187	100.2	30 h	Angew. Chem. Int. Ed. 2017, 56, 8120
NiCo ₂ P _x /CF	1 M PBS	63	63.3	30 h	Adv. Mater. 2017, 29, 1605502
Co-S/FTO	1 M PBS	160	93	40 h	J. Am. Chem. Soc. 2013, 135, 17699
NiWS _x /FTO		373	96	-	
CoW _x /FTO	1 M PBS	271	78	-	Energy Environ. Sci. 2013, 6, 2452
CoMoS _x /FTO		241	85	-	
CoMoS₄ NTA/CC	1 M PBS	104	77	32 h	ChemEur. J. 2017, 23, 12718
Mo ₂ F _x C _{1-x} /rGO	1 M PBS	410	70	48 h	ACS Sustainable Chem. Eng. 2020, 8, 10284
Mo-Ni ₂ P/NF	1 M PBS	84	85	2,500 CV cycles	Nanoscale 2017, 9, 16674
MoP/CNT-700	1 M PBS	102	115	40 h	Adv. Funct. Mater. 2018, 28, 1706523

 η_{10} is the overpotential at the current density of –10 mA cm⁻² except those specified else.

All of the "-" means that no values were reported for the corresponding parameters in the corresponding references.

Catalysts	Electrolyte	Potential (mV vs RHE)	References
		$E_{37.5} = 100$	
Rh-SA/Ti₃C₂O _x	$1.0 \text{ M KOH} + 0.1 \text{ M N}_2\text{H}_4$	$E_{123.1} = 200$	This work
		$E_{221.4} = 300$	
Mn-SA/BNC	1.0 M KOH + 0.5 M N ₂ H ₄	<i>E</i> ₁₀ = 132	Nanoscale 2021, DOI:
WIII-SAY DIVC	1.0 W KOT + 0.3 W N ₂ H ₄	L ₁₀ – 132	10.1039/D0NR09104A
		<i>E</i> ₁₀ = -55	
PW-Co₃N NWA/NF	1.0 M KOH + 0.1 M N ₂ H ₄	<i>E</i> ₅₀ = -29	Nat. Commun. 2020, 11, 1853
		E ₂₀₀ = 27	
Co₃Ta/C	3.0 М КОН + 0.5 М N ₂ H ₄	$E_{25.2} = 60$	Nat. Commun. 2019, 10, 4514
Ni _x P/Ni foam	1.0 M KOH + 1 M N ₂ H ₄	$E_{172} = 100$	Appl. Catal. B: Environ. 2019241, 292
Rh/N-CBs	1.0 M KOH + 0.05 M N ₂ H ₄	<i>E</i> ₁₀ = 72	ACS Appl. Mater. Interfaces 2019, 11, 35039

Table S6. Comparison of HzOR performance in the alkaline media for Rh-SA/Ti₃C₂O_x with other previously reported electrocatalysts.

Ni₃S₂/NF	1.0 M KOH + 0.2 M N ₂ H ₄	$E_{100} = 415$	J. Mater. Chem. A 2018, 6, 19201
Ni₂P/Ni foam	1.0 M KOH + 0.5 M N_2H_4	<i>E</i> ₅₀ = −25	Angew. Chem. Int. Ed. 2017, 56, 842
Ni-NSA	3.0 M KOH + 1 M N ₂ H ₄	<i>E</i> _{227.6} = 250	Angew. Chem. Int. Ed. 2016, 55, 693
NiZn	1.0 M KOH + 1 M N ₂ H ₄	$E_{320} = 600$	Angew. Chem. Int. Ed. 2014, 53, 10336
Ni ₂ P-HNTs/NF	1.0 M KOH + 0.5 M N_2H_4	$E_{100} = 166$	Nanoscale 2020, 12, 11526
Cu ₁ Ni ₂ -N	1.0 M KOH + 0.5 M N_2H_4	<i>E</i> ₁₀₀ = ~200	Adv. Energy Mater. 2019, 9, 1900390
S-CuNiCo LDH-3	1.0 M KOH + 0.02 M N ₂ H ₄	<i>E</i> ₁₀₀ = ~700	J. Mater. Chem. A 2019, 7, 24437
Se/porous carbon membranes	1.0 M KOH + 0.1 M N ₂ H ₄	<i>E</i> ₁₀ = ~450	Angew. Chem. Int. Ed. 2019, 58, 13466
Fe ₂ MoC@NC	1.0 M KOH + 0.1 M N ₂ H ₄	<i>E</i> ₁₀ = ~500	Angew. Chem. Int. Ed. 2018, 57, 17168
CoSe ₂ /NF	1.0 M KOH + 0.5 M N ₂ H ₄	$E_{100} = -17$	Angew. Chem. Int. Ed. 2018, 57, 7649
NiO _x -Pt/C	1.0 M KOH + 0.1 M N ₂ H ₄	<i>E</i> ₁₀₀ = ~200	Appl. Catal. B-Environ. 2017, 201, 22
N-doped carbon	1.0 M KOH + 0.1 M N ₂ H ₄	<i>E</i> ₁₀ = ~700	Angew. Chem. Int. Ed. 2017, 56, 13513

CoNi alloy@CoNi sulfide	1.0 M KOH + 2.0 M N ₂ H ₄	<i>E</i> ₁₀ = ~150	Adv. Mater. 2017, 29, 1604080
Vertical graphene nano- hills-45	1.0 M KOH + 0.05 M N ₂ H ₄	<i>E</i> ₁₀ = ~910	NPG Asia Mater. 2017, 9, e378.
FePc	0.2 M KOH + (-) N ₂ H ₄	<i>E</i> ₁₀₀ = ~0.35	Talanta 2005, 67, 162
Cu nanoparticles	0.1 M KOH + 0.01 M N ₂ H ₄	E ₁₀₀ = ~0.5	J. Mater. Chem. A 2014, 2, 4580
3D PNNF	3.0 М КОН + 0.5 М N ₂ H ₄	<i>E</i> ₁₀₀ = ~0.125	Nano. Res. 2015, 8, 3365
FeN₄	0.2 M NaOH + (-)N ₂ H ₄	$E_{100} = ~0.4$	Electrochem. Commun. 2013, 30, 34
Ni _{0.6} Co _{0.4} -ANSA	3.0 M KOH + 0.5 M N ₂ H ₄	<i>E</i> ₁₀₀ = ~ -1 (V vs SCE)	Adv. Sci. 2017, 4, 1600179
Cu film	3.0 M KOH + 1.0 M N ₂ H ₄	<i>E</i> ₁₀₀ = ~ –0.65 (V vs SCE)	Adv. Mater. 2015, 27, 2361
Fe-CoS ₂ nanosheets	1.0 M KOH + 0.1 M N ₂ H ₄	$E_{100} = 0.129$	Nat. Commun. 2018, 9, 4365

 E_x is the potential at the current density of x mA cm⁻² except those specified else.

Catalysts	Electrolyte	H ₂ production rate	References
Rh-SA/Ti₃C₂O _x	$1 \text{ M KOH} + 0.1 \text{ M N}_2\text{H}_4$	45.77 mmol h ^{−1}	This work
PW-Co₃N NWA/NF	1 M KOH + 0.5 M N ₂ H ₄	1.25 mmol h ⁻¹	Nat. Commun. 2020, 11, 1853
Fe-CoS ₂	1 M KOH + 5.3 M N ₂ H ₄	9.95 mmol h ⁻¹	Nat. Commun. 2018, 9, 4365
PPy/FeTCPP/Co	1 M KOH	0.28 mmol h ⁻¹	Adv. Funct. Mater. 2017, 27, 1606497
GO-PANi31-FP	0.1 М КОН	0.496 μL s ^{−1}	Angew. Chem. Int. Ed. 2016, 55, 13296
Fe _{0.5} Ni _{0.5} @N-GR	1 M KOH	0.5 μL s ^{−1}	Adv. Funct. Mater. 2018, 28, 1706928
WO ₃ /BiVO ₄	$0.5 \text{ M PBS} + 1 \text{ M Na}_2\text{SO}_3$	7.27 μL min ^{−1}	Nano-Micro Lett. 2020, 12, 88
Ti-Fe ₂ O ₃	1 M NaOH	6.67 μL min ^{−1}	ACS Nano 2018, 12, 8625

Table S7. Comparison of H₂ production rate obtained on the Rh-SA/Ti₃C₂O_x with other previously reported electrocatalysts.