Supporting Information

Dealloying PdBi₂ Nanoflakes to Palladium Hydride Leads to Enhanced Electrocatalytic N₂ Reduction

Nikolas Antonatos^{1,*}, Joshua D. Elliott², Vlastimil Mazánek¹, Petr Marvan¹, Paola Carbone², Weixiang Geng³, Yu Jing³, Zdeněk Sofer^{1,*}

¹ Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; e-mail: zdenek.sofer@vscht.cz ; nikolaoa@vscht.cz

² Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom

³ Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

Frequency (cm ⁻¹)	Symmetry	Frequency (cm ⁻¹)	Symmetry
16.2	A_g	75.5	A_g
20.3	B_g	79.0	A_g
34.0	A_g	96.5	A_g
44.6	B_g	116.9	A_g
44.8	A_g	120.6	A_g
63.7	A_g	127.1	B_g
64.1	A_g	127.6	A_g
68.3	B_g	147.8	A_g
69.9	B_g	158.3	B_g

Table S1. The complete spectrum of Raman active mode frequencies and symmetries computed from PBE-SOC DFPT simulations of α -PdBi₂.

Figure S1. a) SEM image of bulk $PdBi_2$ with the corresponding EDS elemental maps of **b)** palladium and **c)** bismuth. **d)** EDS map spectrum of $PdBi_2$ depicting the ratio of Pd:Bi at 1:2.

Figure S2. Wide survey XPS spectra of bulk and exfoliated PdBi₂.

Figure S3. High-resolution XPS spectra of Pd 3d and Bi 4f of a) bulk and b) exfoliated PdBi₂.

Table S2. Ammonia formation rates and Faradaic efficiencies of exfoliated PdBi₂ nanoflakes at different potentials.

Potential vs. Ag/AgCl / V	NH3 yield / μg cm ⁻² h ⁻¹	Faradaic efficiency
-1.4	4.33 3.16	
-1.5 (1)	24.20	4.71
-1.5 (2)	20.38	4.08
-1.5 (3)	22.17	4.30
-1.5 average	22.25 ± 1.56	4.36 ± 0.26
-1.6 (1)	28.03	2.39
-1.6 (2)	26.75	2.01
-1.6 average	27.39 ± 0.64	2.20 ± 0.19
-1.7 (1)	29.81	0.66
-1.7 (2)	28.28	0.61
-1.7 average	29.04 ± 0.76	0.64 ± 0.03

Table S3. Ammonia formation rates and Faradaic efficiencies of exfoliated $PdBi_2$ nanoflakesafter each NRR cycle at -1.5 V vs. Ag/AgCl.

Cycle number	NH3 yield / μg cm ⁻² h ⁻¹	Faradaic efficiency
1	23.44	4.52
2	25.99	7.37
3	30.32	14.87
4	28.53	13.88
5	31.34	16.98

Figure S4. a) Long-term choronoamperometry curve of PdH_x showing good stability. b) NH_3 yield and FE for initial, after 5 cycles of NRR and post-stability test NRR (after 24 h) of $PdBi_2$ at -1.5 V vs. Ag/AgCl.

Figure S5. a) First CV of PdBi₂, before any catalysis and after one, two and three NRR cycles.
b) Ten consecutive CVs of PdBi₂, after three cycles of NRR. Scan rate: 100 mV s⁻¹.

Figure S6. NH₃ formation rate of PdBi₂ with corresponding Faradaic efficiency in **a**) acidic environment (0.1 M H₂SO₄, pH = 1) and **b**) neutral environment (0.1 M PBS, pH = 7). **c**) LSV curves of PdBi₂ in different electrolytes. Scan rate: 100 mV s⁻¹.

Figure S7. NH3 yield comparison in 0.1 M KOH between: PdBi2 in saturated N2 at -1.5 V, PdBi2 in saturated Ar at -1.5 V, PdBi2 in saturated N2 at OCP and bare GC in saturated N2 at -1.5 V.

Figure S8. Schematics from the top and side views for the adsorption of H and N₂ on different phases of PdBi₂ without or with Bi vacancies. (a) α -PdBi₂-N₂, (b) α -PdBi₂-v-N₂, (c) β -PdBi₂-N₂, (d) β -PdBi₂-v-N₂, (e) α -PdBi₂-H, (f) α -PdBi₂-v-H, (g) β -PdBi₂-H and (h) β -PdBi₂-v-H.

Table S4. The adsorption energy (E_{ad}) and distance (D_{ad-M}) between the adsorbed species and the adsorption site of α -PdBi₂, α -PdBi₂-v, β -PdBi₂ and β -PdBi₂-v.

	a-PdBi ₂	α-PdBi ₂ -v	β-PdBi ₂	β-PdBi ₂ -v
E _{ad} (H) / eV	0.50	0.25	0.75	0.29
$E_{ad}(N_2) / eV$	-0.08	-0.17	-0.09	-0.15
D_{H-M} / Å	1.89	1.77	2.13	1.78
D _{N2-M} / Å	3.93	3.80	3.89	3.73

Figure S9. TEM/EDS map spectra of exfoliated PdBi₂ flakes **a**) before and **b**) after NRR depicting the change of Pd:Bi ratio from 1:2 to 4:1. Peaks appearing around 8 keV are due to the Cu of the TEM grids.

Figure S10. TEM/SAED diffraction patterns of exfoliated PdBi₂ **a)** before and **b)** after the NRR stability test. **c)** XRD patterns of bare GC and PdBi₂ on GC before and after the NRR stability test. The inset graph depicts the enlarged frame.

Figure S11. a-b) SEM images of exfoliated PdBi2 after a 24-hour stability test with the corresponding EDS elemental maps of c) palladium and d) bismuth. e) EDS map spectrum of PdBi₂ depicting the ratio of Pd:Bi at 3:1.

Figure S12. N_2H_4 formation rate of exfoliated PdBi₂ at different potentials.

Figure S13. N₂H₄ formation rate of dealloyed PdBi₂ flakes of 2 h cycles at -1.5 V vs. Ag/AgCl.

Construction of theoretical Pourbaix diagram for PdBi₂

In this supplementary section we report the reactions involved in the construction of the theoretical Pourbaix diagram,¹ details are provided for the Pd-only, Bi-only, and mixed reactions. Furthermore, we also provide a set of tables that report on DFT formation energies and the experimentally motivated corrections to those energies.

For reactions involving Pd-based reagents, we establish the Pd^{2+} ion as the standard reference for the calculation of reaction free energies. Thus, we consider the following reactions:

$$Pd^{2+} \rightleftharpoons Pd^{2+} \#(1)$$

$$Pd^{2+} + 2e^{-} \rightleftharpoons Pd\#(2)$$

$$Pd^{2+} + H_20 \rightleftharpoons Pd0 + 2H^{+} \#(3)$$

$$Pd^{2+} + 2H_20 \rightleftharpoons Pd0_2 + 4H^{+} + 2e^{-} \#(4)$$

Similarly, we adopt the Bi³⁺ ion as a standard reference for calculation of the free energy in reactions involving Bi-based reagents. These reactions are as follows:

$$Bi^{3+} \rightleftharpoons Bi^{3+} \#(5)$$

$$Bi^{3+} + 3e^{-} \rightleftharpoons Bi\#(6)$$

$$Bi^{3+} + 3H^{+} + 6e^{-} \rightleftharpoons BiH_{3}\#(7)$$

$$Bi^{3+} + H_{2}O \rightleftharpoons BiO^{+} + 2H^{+} \#(8)$$

$$Bi^{3+} + \frac{3}{2}H_{2}O \rightleftharpoons \frac{1}{2}Bi_{2}O_{3} + 3H^{+} \#(9)$$

$$Bi^{3+} + \frac{7}{4}H_{2}O \rightleftharpoons \frac{1}{4}Bi_{4}O_{7} + \frac{7}{2}H^{+} + \frac{1}{2}e^{-} \#(10)$$

stable Bi species exhibits a constant activity, the reactions considered for the formation of PdBi₂ are:

$$Bi^{3+} + \frac{1}{2}Pd^{2+} + 4e^{-} \rightleftharpoons PdBi_{2}\#(11)$$

$$Bi^{3+} + \frac{1}{2}Pd + 3e^{-} \rightleftharpoons PdBi_{2}\#(12)$$

$$Bi^{3+} + \frac{1}{2}PdO + H^{+} + 4e^{-} \rightleftharpoons PdBi_{2} + \frac{1}{2}H_{2}O\#(13)$$

$$Bi^{3+} + \frac{1}{2}PdO_{2} + 2H^{+} + 5e^{-} \rightleftharpoons PdBi_{2} + H_{2}O\#(14)$$

The theoretical free energy of formation $({}^{\Delta G}{}^{DFT}_{f})$, computed at the PBE-SOC level of theory for each of the solid-state species are reported in the following table:

Table S5. Theoretical free energy of formation of each of the solid species considered in the construction of the Pourbaix diagram.

Solid	ΔG_{f}^{DFT} (eV)
PdBi ₂	-0.760
PdO	-1.177
PdO_2	-0.255
Pd	0.000
Bi ₂ O ₃	-5.232
Bi_4O_7	-10.511
Bi	0.000

The corrections applied to the experimental ion chemical potentials based on the computed formation free energies was -0.098 eV for Bi^{3+} and BiO^+ ions and -0.513 eV for the Pd^{2+} ion.²

² M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions; 2nd Ed.: National Association of Corrosion Engineers, Houston, Texas, **1974**