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Text S1. Chemicals and reagents.

TisAlIC, powder were obtained from lilin 11 Technology Co. Ltd. (China).
Polytetrafluoroethylene (PTFE, 50 mm diameter with a pore size of 0.47 um) was
purchased from Millipore (USA). Potassium peroxymonosulfate (PMS,
2KHSO5-KHSO,4-K,S0,4), sulfamethoxazole (SMX, 98%), carbamazepine (CBZ, 98%),
tetracycline (TC, 98%) bisphenol A (BPA, 96%), levofloxacin (Lev, 97%), 1,3-
diphenylisobenzofuran (DPBF, 97%), benzoic acid (BA, 99%), and p-hydroxybenzoic
acid (HBA, 99%) were procured from Sigma-Aldrich (Shanghai, China). Sodium
chloride (NaCl, 96%), sodium nitrate (NaNO3, 99%), disodium hydrogen phosphate
(Na,HPO,, 96%), sodium bicarbonate (NaHCO;, 99.8%), 2,2,6,6-tetramethyl-4-
piperidinol (TEMP, 96%), 5,5-dimethyl-1-pyrroline-n-oxide (DMPO, 97%), furfuryl
alcohol (FFA, 98%), tert-butyl alcohol (TBA, 98%), methanol (98%), ethanol (C,H;OH,
96%), nitric acid (HNOs, 65 wt%), lithium fluoride (LiF, 98%) hydrochloric acid (HCl,
36-38%), sodium hydroxide (NaOH, 96%) and hydrazine hydrate (N,H,-H,0, 50%)
were supplied by Sinopharm Chemical Reagent Co. Ltd. (China). All reagents were
used without further purification. Deionized water (resistivity 218.2 MQ cm™) was

used in the experiments.
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Text S2. Characterizations.

The morphology of the nanohybrid membrane was studied by field emission
scanning electron microscopy (FESEM, JSM-7500F, Japan) and field emission
transmission electron microscopy (FETEM, Talos F200S, USA). The topographical
images of the Ti;C,T, nanosheets were recorded via atomic force microscopy (AFM,
Bruker, USA) under tapping mode at ambient conditions. The images of the isolated
single copper atoms and nanoclusters were obtained by using high-angle annular
dark field-scanning transmission electron microscopy (HAADF-STEM, JEM-ARM200 F,
Japan). The Cu K-edge X-ray adsorption fine structure (XAFS) analysis was carried out
at the Beijing Synchrotron Irradiation Facility using the fluorescence mode. An X-ray
diffractometer (XRD, D/max 2550 VB/PC, Japan) equipped with Cu Ka radiation (A =
1.5418 A) was used to analyze the phase structure of the catalysts. The composition
and chemical state of the catalysts were characterized by X-ray photoelectron
spectroscopy (XPS, Escalab 250 Xi, USA). The Raman spectra were collected using a
micro-Raman spectroscopy system (inVia-Reflex, UK). Fourier transform infrared
spectrometer (FT-IR, NEXUS-670, ThermoFisher, USA) was measured with KBr
powder as the reference transmittance in a wavenumber range of 4000-400 cm™ to
analyze the functional groups of the filters. The total organic carbon (TOC) was
determined using a TOC/TN analyzer (Multi N/C 3100, Germany). Inductively coupled
plasma mass spectrometry (ICP-MS, iCAP-Q, USA) was used to determine the copper
ions in the nanohybrid membrane and effluent. The flow rate was controlled by
using an Ismatec ISM833C peristaltic pump (Switzerland). The electric field was
developed by using a DH1766A-1 DC power supply system (China), and the electric

current was measured using a multi-meter (Fluke 18B, China).
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Text S3. Degradation kinetics.

The reaction rate! was evaluated by using a pseudo first-order kinetics model

(Equation S1), and the SMX degradation efficiency (R%) was calculated using

Equation S2:

S1

S2

Where C, is the initial pollutant concentration, C; is the concentration at a certain

time t during the degradation process, C, is the adsorbate concentration at

equilibrium, and k is the reaction rate constant.
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Text S4. ROS concentration measurement.

DPBF was employed as a 10, trapping agent was employed to analyze the 0,
concentration.2 The 10, concentration was obtained from the concentration of the
degraded DPBF (molar ratio 1:1), measured by using a UV-Vis spectrometer at A =
410 nm. BA was used as a molecular probe to detect the HO® concentration,
analyzed by the concentration of the byproduct (p-hydroxybenzoic acid, p-HBA), as
per the equation: [HO*] = [p-HBA] x 5.87. The p-HBA concentration was measured by
HPLC, with the mobile phase consisting of water/acetonitrile (85/15, v/v) at A = 270
nm. In addition, the amount of generated SO,*~ was quantified by measuring the
indirect product of benzoquinone, resulting due to the SO,*~ oxidation of p-HBA. The
benzoquinone concentration was measured by HPLC, with the mobile phase

consisting  of  methanol/water (50/50, v/v) at A = 244 nm.
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Text S5. Energy consumption.
The electric energy (kWh m=3)3 normalized per log-removal of contaminant was
calculated using Equation S3:

. Vi

G s3
Q log(—)
C

e
Where | is the current (mA), V is the total cell potential (V), and Q is the volumetric

flow rate (m3 h1).
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Table S1. EXAFS fitting parameters at the Cu K-edge (S,° = 0.85).

Sample Shell Ne R(A)? o2x103(A2)c  AEy(eV)? R factor

Cu-SA/Ti3C, T, Cu-0 3.1+03 1.5 11.9 43+0.7 0.018

aN: coordination numbers; YR: bond distance; co2: Debye-Waller factors; 9AE,: the inner potential

correction. R factor: goodness of fit.
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Table S2. Comparison of different catalysts for micro-pollutants removal.

Pollutan Total cell Energy
Removal k-value
No. Name Type t Time pH potential consumption Refer.
efficiency (min?)
(mgL?) (v) (kWh m?)
CoFe, 04 Metal oxide SMX 20
1 6 99% 0.293 4
nanoparticles hybrids (10) min
Co50,-Bi,05 Metal oxide BPA 30
2 7 98% 0.441 >
nanoparticles nanoparticles (20) min
Zr-doped Ir SMX 120
3 Electrochemistry 100% 4 8.50 6
Anode (20) min
5 CNT/r-FeOOH Bio-electro-Fenton SMX
94.6% 0.23 0.28 7
cathode system (25)
6 Ti/Ta,05-Sn0, CBZ 480
Electrochemical 7 71.7% 1.57 60.30 8
electrodes (20) min
7 BPA 20
FeS,@BrGO Electro-Fenton 7.4 0.58 4.5 B
(50) min
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Figure S1. XRD patterns of TisAlC, powder and TisC,T, nanohybrid filter.
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Figure S2. FETEM image of TizC,T,.
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Figure S3. AFM image of the TisC,T, nanohybrid filter on cleaved mica.
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Figure S4. XPS spectra of the Ti;C,T, nanohybrid filter.

Note: The peaks that correspond to C-Ti, O-Ti, C-Ti-O/OH, C-C and C-0/C=0 bonds
were deconvoluted.’® The Ti 2p spectrum of Ti;C,T, membrane contains four main
sets of peaks corresponding to (i) Ti—C bonds at binding energies of 454.0 eV, (ii) Ti%*
suboxides and/or hydroxides (454.6 eV), (iii) Ti** suboxides and/or hydroxides (455.6
eV), and (iv) a weak peak attributed to Ti—O/F groups (457.6 eV), suggesting

accessible surface-terminating (O, OH and F) groups on the MXene nanosheets.!!
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Figure S5. FTIR spectra of the Ti;C,T, nanohybrid filter.

Note: the FTIR spectrum of Ti;C,T, nanohybrid filter exhibited two typical

representative peaks at 3445 cm™ and 1645 cm™, corresponding to the vibration of

O-H stretching and H—-O-H bending on the Ti;C,T, nanohybrid filter.1?
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Figure S6. XRD patterns of the Ti3C,T,, Cu-SA/TisC,T, Cu-NC/TisC,T, and Cu-

NP/Ti;C,T, nanohybrid filters.

Note: In the XRD pattern of Cu-NC/Ti5C,T, (Figure S5), a distinct peak at 43.4° were

observed, corresponding to the respective {111} crystal plane of Cu NC.13 In contrast,

no XRD peak was observed for Cu-SA/Ti;C,T,. As such, the size of Cu species in Cu-

SA/Ti3C,T, is below the detection limit of XRD and TEM, possibly in the Cu-SA regime.

S16



Cu2p

2p3/2

g
=
5 ‘2p1/2
=y ., Cu-SA/TC:T, E \!\
) U ppacl M N L M
s | '
*qé '"‘:'5 .“.‘ i TiCaT

" | \ , X
= ﬂw%“&w"ﬂwhan

VAT ‘:‘

I ‘ ' ' I I ey
I ‘r’ |\||’I{\l |“|Ih,|.'ll \'/I"I'lln “l”]ﬁ”““

|'|‘1 ll' H i
#

930 935 940 945 950 955
Binding energy (eV)

Figure S7. XPS spectra of Cu-SA/Ti;C,T, and pure Ti;sC,T, nanohybrid filters.
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Figure S8. The EDX elemental mappings of Cu-SA/Ti;C,T,. HAADF-STEM image (a) and
the corresponding EDX elemental mapping images of Cu-SA/TisC,T, filter: (b) Ti, (c) C,

(d) O and (e) Cu.
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Figure S9. The SMX removal by PMS, pure TisC,T,, Cu-SA/Ti3C,T,, Cu-NC/Ti3C,T, and
Cu-NP/Ti3C,T, nanohybrid filters alone. Experimental condition: [PMS]y = 1.5 mmol L

1, [SMX]o = 0.04 mmol L7, flow velocity = 1.5 mL min, total cell potential = 1V, and

pH=6.2+0.2.

Note: PMS alone exhabited a very weak oxidation (<3%) on SMX removal, suggesting
that the activation of PMS should be ignored. Besides, pure TisC,T,, Cu-SA/Ti5C,T,,

Cu-NC/Ti3C,T, and Cu-NP/Ti3C,T, nanohybrid filters alone showed a negligible

= et R e
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adsorption (5%) of SMX within 30 min in a single-pass model.

S19




1.0

0.0

b —¥— Blank

K ~@- 100 mmol L' TBA

‘ll\ 100 mmol L' Methanol

KX —- 100 mmol L"! Na:CO:
) —@- 100 mmol L' FFA

L0 —@- 50 mmol L' K:Cr207
ub"“i-'@--ﬁ————f
"

Bl

[

: 4 — =i — B o - = = =
¥ ¥ -¥--F-F - - %
0 5 10 15 20 25 30

Time (min)

Figure S10. Effect of different quenching agents on the SMX degradation.

Experimental condition: [PMS]y = 1.5 mmol L, [SMX], = 0.04 mmol L%, flow velocity

= 1.5 mL min, total cell potential =1V, and pH=6.2 £ 0.2.
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Figure S11. EPR spectra with DMPO in methanol solution. Experimental condition:
[PMS], = 1.5 mmol L%, flow velocity = 1.5 mL min, total cell potential =1V, and pH

=6.2%0.2.
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Figure S12. XPS spectra of Cu 2p of Cu-SA/Ti;C,T, nanohybrid filter before and after

reaction.
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Figure S13. PMS decomposition under different conditions. Experimental condition:
[PMS], = 1.5 mmol L%, [SMX], = 0.04 mmol L, flow velocity = 1.5 mL minl, total cell

potential =1V, and pH=6.2+£0.2.
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Figure S14. ATR-FTIR spectra of the alone PMS solution, PMS pass through Cu-
SA/Ti3C,T, nanohybrid filter, PMS and SMX pass through Cu-SA/Ti;C,T, filter together.
Experimental condition: [PMS]y = 1.5 mmol L, [SMX], = 0.04 mmol L%, flow velocity

= 1.5 mL min, total cell potential =1V, and pH =6.2 £0.2.
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Figure S15. The chemical structure of SMX (a), NPA charge distribution and Fukui

index of SMX (b), ESP map of SMX (c), and possible routes of degradation of SMX in

the Cu-SA/TisC,T, system (d). Experimental condition: [PMS], = 1.5 mmol L, [SMX],

= 0.04 mmol L7, flow velocity = 1.5 mL min%, total cell potential =1V, and pH =6.2 +

0.2.
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Figure S16. Effect of the loading of Cu-SA (a), PMS dose(b), initial pH (c), flow velocity

(c), applied total cell potential (e) and coexisting micropollutant and salts (f) for Cu-

SA/Ti3C,T, nanohybrid filter in the single-pass filtration mode. Experimental

conditions: [PMS]y = 1.5 mmol L, [SMX], = [BPA], = [CBZ], = [TC], = [Lev]y = 0.04

mmol L, [NaCl]g = [NaNOs]y = [Na,HPO,]o = [Na,COs]p = 10 mmol L1, flow velocity =

1.5 mL min%, total cell potential =1V, and pH =6.2 £0.2.
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Figure S17. Estimation of retention time of Cu-SA/Ti;C,T, nanohybrid filter.

Note: we treat the membrane as an ideal filter with uniform thickness of nanosheets,
and interspacing.1* The approximate calculation of retention times was illustrated as

followed (Equation S1, S2).

1

V4 SA X h h,
te— = rea _ (S]_)
Q Permeance x S, . X Pressure  Permeance x Press
. h +h, h-h, h,h
h = h2 - 1 = h2 = (52)
hy + h, h, + h, h, +h,

Where h, h; and h; represents for the thickness of membrane, Ti;C,T, nanosheet and
interspacing, respectively (nm). Saeq (cm?) stands for the effective filter area of
membrane. Permeance (L (m?-h-bar)?) and Pressure (bar) could be obtained by
experiments conditions. In an ideal condition, the measurements of h, h; and h,
should be obtained via cross-sectional FESEM, AFM images and results from Bragg's
Law (2d-sind = nA), respectively. Notably, the spacing of (002) plane corresponds to

the interspacing of membranes.
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Figure S18. The atomic-resolution HAADF-STEM images of the Cu-SA/Ti3;C,T,

nanohybrid filter after stability test.
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(a) c

Figure $19. HAADF-STEM and EDS mapping on the Cu-SA/TisC,T, nanohybrid filter

before (a-f) and after (g-l) tests.

S29



Before

PO .

L“/\* R After

A

Intensity (a.u.)

10 20 30 40 50 60 70
2 Theta (degree)

Figure S20. XRD patterns of the Cu-SA/TisC,T, nanohybrid filter before after stability

test.
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