Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

The high performance photoelectrochemical sensor for specific detection of H_2O_2 and glucose based on an organic conjugated microporous polymer

Qiqi Sun, ‡^a Qi Liu, ‡^a Wen Gao,^b Chuanwang Xing,^a Jingshun Shen,^a Xue Liu,^a Xia Kong,^c

Xiyou Li,^a Yuexing Zhang *d and Yanli Chen *a

^a College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China

^b Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao 266580, PR

China

^c College of Chemical and Biological Engineering, Shandong University of Science and Technology,Qingdao 266580, PR China

^d College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 PR China

* Corresponding authors at: College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China (Y. Chen).

E-mail addresses: yanlichen@upc.edu.cn (Y. L. Chen), zhangyuexing@sdu.edu.cn (Y. X. Zhang)

‡ Q. Q. Sun and Q. Liu contributed equally to this work.

1. Experimental section

Materials

Fluorine-doped tin oxide (FTO, 14 Ω) conductive glasses were purchased from NGC. Et₃N and THF were distilled from CaH₂ and Na, respectively. All other reagents and solvents were of reagent grade and used as received. Nafion (5 wt%) were purchased from Alfa Aesar Co. Ltd. H₂O₂ (30%) was purchased from Sinopharm Chemical Reagent Co., Ltd. Cul, Pd(PPh₃)₂Cl₂ 4-iodobenzaldehyde, pyrrole were purchased from Aladdin (Shanghai, China). 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), Glucose Oxidase (100 U/mg), 3,3',5,5'-tetramethylbenzidine (TMB), *D*-Histidine, *p*-benzoquinone and terephthalic acid were purchased from Sigma-aldrich (Milwaukee, WI). Hydrogen peroxide (H₂O₂) solution, 30 wt.% in water and H₂O₂ assay kit were purchased from Innochem Co., Ltd (Beijing, China). All solutions were prepared with deionized (DI) water purified by Youpu Water Purification System (Chengdu Youpu Equipment Co., Ltd. China).

Material Characterization

MALDI-TOF mass spectra were recorded on a Bruker BIFLEX III ultrahigh-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with alphacyano-4-hydroxycinnamic acid as the matrix. Elemental analysis was performed using a Vario EL III instrument. Thermogravimetric (TG) was performed on a simultaneous DSC-TGA SDT 650 analyzer under N₂ flowing with a 5 $^{\circ}$ C min⁻¹ heating rate. The ¹³C CP/TOSS NMR spectra were recorded with a 4 mm MAS probe with a sample spinning rate of 3.0 kHz. IR spectra was recorded on a Hitachi U-3300 Fourier infrared spectrometer with KBr pellets. Raman spectroscopy of the samples was measured with a laser Raman microscope system (Nanophoton RAMANtouch) excited with 532 nm. X-ray diffraction (XRD) analysis was performed on a Rigaku Ultima IV X-ray diffractometer using a Cu K α source (40 kV, 40 mA, λ = 0.154056 nm). The morphology and structure of the materials were measured by field-emission scanning electron microscope (SEM, Quant 250FEG) and high resolution transmission electron microscope (HRTEM, JEM-2100F) at 200 kV. N₂ adsorption-desorption isotherms were

analyzed through a Micromeritics ASAP 2060 analyzer at 77 K and the specific surface area of the materials were calculated based on the Brunauer-Emmett-Teller (BET) method, the total pore volume was estimated from single point adsorption at a relative pressure P/P_0 of 0.995 and the pore size distributions were calculated by means of NLDFT method. Ultraviolet Photoelectron Spectroscopy (UPS) data were collected with a homemade He lamp source which produces a resonance line He I and He II under sample biases (1 V). Ultraviolet-visible spectroscopy (UV-vis) and UV-vis diffuse reflection spectra (DRS) were operated on a Hitachi U-3900 spectrophotometer. Photoluminescence spectrum (PL) was recorded on a Hitachi F-7000 fluorescence spectrophotometer. The emission quantum yields were collected on FLS980 (Edinburgh instrument Ltd, England) under excitation wavelength of 430 nm for PorPor-CMP and PorPc-CMP, 600 nm for PcPc-CMP with an integrated sphere attachment and BaSO₄ used as the reference. Time-resolved photoluminescence spectra was collected on FLS980 (Edinburgh instrument Ltd, England) with an excitation wavelength of 340 nm. The optical profile were collected on ZYGO newview7100. The Atomic Force Microscopy (AFM) were collected on Park systems NX-Wafer.

Preparation of CMPs

Preparation of PorPor-CMP: The 5, 10, 15, 20-tetrakis(4-iodophenyl)porphyrin (TIPP) and 5,10,15,20-tetrakis(4-ethynylphenyl)porphyrin (TEPP) were prepared according to published procedures,^{1,2} and characterized by mass spectrometry and elemental analysis, Scheme S1 and Fig. S3. The PorPor-CMP was synthesized through polycondensation via a Sonogashira–Hagihara coupling reaction, Scheme S1. In a typical synthesis, a mixture of TEPP (142 mg, 200 mmol) and TIPP (224 mg, 200 mmol) into Et₃N/THF (40 / 80 mL) with CuI (2.0 mg, 10.5 mmol) and Pd(PPh₃)₂Cl₂ (3.0 mg, 15.9 mmol) as co-catalysts was heated to 65 °C under a N₂ atmosphere for 48 h. After the mixture cooled to room temperature, the product was collected by filtration; washed with H₂O, DMF, toluene, THF, CHCl₃, and CH₃OH in order. Then the wet sample was washed by Soxhlet extraction for 24 h with THF, methanol, and acetone as solvents, respectively, to remove the unreacted TEPP, TIPP. Finally, the generate bulk PorPor-

CMP was dried in a vacuum oven at 80 $^{\circ}$ C for 12 h, the yield is 87% (229mg, yield % = theoretical mass/actual mass %).

Preparation of PcPc-CMP: The 2(3),9(10),16(17),23(24)-tetra(iodo)phthalocyanine (H₂[Pc(I)₄]), 2(3),9(10),16(17),23(24)-tetra(ethynyl)phthalocyanine (H₂[Pc(ethynyl)₄]), were prepared according to published procedures,^{3,4} and characterized by mass spectrometry and elemental analysis, Scheme S1 and Fig. S3. The PcPc-CMP was synthesized through polycondensation via a Sonogashira–Hagihara coupling reaction, Scheme S1. In a typical synthesis, a mixture of H₂[Pc(ethynyl)₄] (122 mg, 200 mmol) and H₂[Pc(I)₄] (204 mg, 200 mmol) into Et₃N/THF (40 / 80 mL) with Cul (2.0 mg, 10.5 mmol) and Pd(PPh₃)₂Cl₂ (3.0 mg, 15.9 mmol) as co-catalysts was heated to 65 °C under a N₂ atmosphere for 48 h. After the mixture cooled to room temperature, the product was collected by filtration; washed with H₂O, DMF, toluene, THF, CHCl₃, and CH₃OH in order. Then the wet sample was washed by Soxhlet extraction for 24 h with THF, methanol, and acetone as solvents, respectively, to remove the unreacted H₂[Pc(ethynyl)₄], H₂[Pc(I)₄]. Finally, the generate bulk PcPc-CMP was dried in a vacuum oven at 80 °C for 12 h, the yield is 83% (186mg, yield % = theoretical mass/actual mass %).

Density Functional Theory (DFT) Calculation

The initial crystal structures of PorPor-CMP, PorPc-CMP, and PcPc-CMP are built with Materials Visualizer interface of BIOVIA Materials Studio 2017 (17.2) and then these structures together with the cell unit were optimized. The PerdewBurke-Ernzerh exchange-correlation functional of generalized gradient approximation (GGA-PBE) with Grimme's default DFT-D parameters was used. The double-numeric with polarization functions basis set (DNP) was chosen. All calculations were performed using the DMol³ module of BIOVIA Materials Studio 2017 (17.2). The optimized crystals are C222 space group with a = b = 27.7 Å and $\alpha = \beta = \gamma = 90^{\circ}$ for PorPor-CMP, P2 space group with a = b = 36.7 Å and $\alpha = \beta = \gamma = 90^{\circ}$ for PorPc-CMP, and P2/M space group with a = 17.0 Å and b = 20.2 Å and $\alpha = \beta = \gamma = 90^{\circ}$ for PcPc-CMP. c axis was set to long enough to avoid interactions between layers (about 20 Å after optimization). The convergence criteria for structure optimization were set to: (a) a SCF tolerance of 1 × 10^{-5} hartree, (b) an energy tolerance of 1 × 10^{-5} hartree, (c) a maximum force tolerance of 2 × 10^{-3} hartree/Å; and (d) a maximum displacement tolerance of 5 × 10^{-3} Å, (e) thermal smearing of 0.010 Ha, (f) Monkhorst-Pack grid k-points of 1 × 1 × 1. Based on the optimized crystal structures, energies and electron properties were performed with similar setting up as optimization except that the energy tolerance was increased to 1 × 10^{-6} hartree and k-points was changed to 4×4×2.

Anti-Interference, Repeatability, and Stability Test

Anti-Interference test of PorPc-CMP sensor for H_2O_2 and glucose was performed by adding L-tyrosine, L-tryptophan, L-arginine, B-alanine, L-asparaginic acid, D-cysteine, L-histidine, guanine, adenine, cholesterol, glucose/ galactose, dopamine, bisphenol A, catechinic acid, salicylic acid, acetaminophen, trioxypurine, ascorbic acid, citric acid, rutin hydrate, Na⁺, K⁺, Mg²⁺, Fe³⁺, Zn²⁺, and Ca²⁺ gradually ([Inf]/[H₂O₂] or [Glu] = 10 : 1). The repeatability was tested through detecting 1 and 10 × 10⁻⁶ M glucose with five PorPc-CMP sensors prepared in the same manner. Long-term stability testing is concerned with applying the prepared PorPc sensor for detecting glucose before and after being stored in air for 180 days without being used.

Peroxidase-like Activity Assay

In a typical procedure, 200 μ L of CMPs (0.5 mg mL⁻¹), 200 μ L of H₂O₂ (5 mM), 200 μ L of TMB (0.5 mM), and 1.4 mL Tris-HCl solution (0.1 M, pH=7.0) were mixed together and kept in a total volume of 2 mL. The solutions were irradiated under the wavelength of 420-430 nm LED lamp-house. After 1 min, absorbance of the solution was obtained on a spectrophotometer.

ROS Scavenger Quenching and Identifying Experiments

The ROS quenching experimental process was similar to the peroxidase-like activity of three CMPs (50 μ g/mL PorPor-CMP/PorPc-CMP/PcPc-CMP, 0.5 mM H₂O₂ and 0.05 mM TMB), apart from adding quenching agents (CH₃OH, *D*-histidine and *p*benzoquinone) (10 mM) to the different systems.

The hydroxyl radical (•OH) generated by CMPs + H_2O_2 were investigated by measuring the respective fluorescence of 2-hydroxyterephthalic acid, which was generated by the reaction of TA with •OH. In this procedure, 200 µL of CMPs (0.5 mg mL⁻¹) were added into 1.8 ml Tris-HCl solution containing TA (0.5 mM) and H_2O_2 (0.5 mM), incubate 1 min under LED lamp, and then, the fluorescence intensities of 2-hydroxyterephthalic acid at 426 nm were monitored.

The optimization of Nafion dosage for PEC sensor

In order to establish a better sensor, the Nafion dosage was investigated using PorPc-CMP. As shown in Fig. S1A, the constructed photoelectrodes with too high (>90 μ L) or too low (<10 μ L) amount of nafion have very poor activity and show similar activity between 40 and 70 μ L. Comprehensive consideration, in order to minimize the impact of Nafion on the porosity of the polymer material, we chose 40 μ L of Nafion dosage.

In addition, we use another method (method-2), first drop the polymer material onto the electrode surface, and then drop a thin layer of Nafion solution. This method can significantly reduce the impact of Nafion solution on the pores of the material. The test found that this is not much different from the method (method-1) used in this manuscript, although it shows a slightly higher activity, but the stability is worse, as shown in Fig S1B and S1C. In summary, a proper amount of Nafion will not reduce the activity of the photoelectrode, but also helps to improve the stability of the photoelectrode.

The optimization for pH value of Tris-HCl solution to H₂O₂ PEC sensing

In order to establish a better monitoring environment, the influences of the pH were investigated using PorPc-CMP, Fig. S10. As shown in Fig. S10, the photocurrent response increased from pH=3.0 to pH=7.0, and then dropped sharply at pH=8.0. Therefore, the optimum pH is 7.0. It shows that the system is close to the human environment and is beneficial to the detection of the human environment.

The optimization for pH value of Tris-HCl solution to glucose PEC sensing

In order to establish a better monitoring environment, the influence of the pH value was investigated using PorPc-CMP, Fig. S19. As shown in Fig. S19, the photocurrent response increased from pH=3.0 to pH=7.0, stayed steady between pH =6 to pH =7 and then dropped sharply at pH=8.0. Therefore, the optimum pH is 7.0. It shows that the system is close to the human environment and is beneficial to the detection of the human environment.

Scheme S1 Synthesis route to PorPor-CMP, PorPc-CMP, and PcPc-CMP.

Fig. S1 The TEM image of PorPc-CMP solid tube befor washing (A) and hollow tube after washing (B) by Soxhlet method

Fig. S2 The relative activity of PorPc-CMP electrode with different dosage of Nafion (A), Photocurrent responses of two types of PorPc-CMP sensors obtained by using method-1 (Red) and method-2 (Blue) for H_2O_2 in the range of 0.05-5 mM (B), Photocurrent response of the PEC sensor fabricated by method-2 under periodic light irradiation (C).

Fig. S3 MALDI-TOF mass spectrum of TIPP (A), TEPP (B), $H_2[Pc(I)_4]$ (C), and $H_2[Pc(ethynyI)_4]$ (D). TIPP: MALDI-TOF MS: calcd. for $C_{44}H_{26}N_4I_4$ (M⁺): 1117.83; found m/z 1118.03 (Fig. S1A). Elemental analysis: Calcd for $C_{44}H_{26}N_4I_4$: C 47.26; H 2.34; N 5.01; Anal. found C 47.37; H 2.67; N 5.47. TEPP: MALDI-TOF MS: calcd. for $C_{52}H_{30}N_4$ (M⁺): 710.25; found m/z 710.22 (Fig. S1B). Elemental analysis: Calcd for $C_{52}H_{30}N_4$: C 87.86; H 4.25; N 7.88; Anal. found C 87.21; H 4.67; N 8.12. $H_2[Pc(I)_4]$: MALDI-TOF MS: calcd. for $C_{34}H_{14}N_8I_4$ (M⁺): 1017.75; found m/z 1017.94 (Fig. S1C). Elemental analysis: Calcd for $C_{34}H_{14}N_8I_4$: C 37.75; H 1.39; N 11.01; Anal. found C 37.42; H 1.57; N 10.89. MALDI-TOF MS: calcd. for $C_{40}H_{18}N_8$ (M⁺): 610.17; found m/z 610.94 (Fig. S1D). Elemental analysis: Calcd for $C_{40}H_{18}N_8$: C 78.68; H 2.97; N 18.35; Anal. found C 78.81; H 3.26; N 17.93.

Fig. S4 Powder samples of three CMPs.

Fig. S5 TGA of PorPor-CMP, PorPc-CMP, and PcPc-CMP.

Fig. S6 ¹³C CP/MAS NMR spectra of PorPor-CMP (A), PorPc-CMP (B), and PcPc-CMP (C).

Fig. S7 PXRD patterns of PorPor-CMP, PorPc-CMP, and PcPc-CMP.

Fig. S8 UV-vis DRS of PorPc-CMP-solid tube and hollow tube, and nafion-treated PorPc-CMP-solid tube and hollow tube, and nafion film (A)^a A schematic light pathway illustration of PorPc-CMP-solid tube and hollow tube (B)

^a In order to make the comparison in **Fig. S8A** more rigorous, we designed the following experiment. First, two groups of the PorPc-CMP solid tubes (each 50 mg) were accurately weighed and recorded as sample A and sample B respectively. Then, the rigorously washing by Soxhlet method for sample A was carried out and sample B remained constant. At this point, the weights of PorPc-CMP in the two groups of samples A and B were approximately equal, followed by treatment with nafion, drying and UV-vis DRS testing.

Fig. S9 The photographs and SEM images (Side views) (A-C) and (Top views) (D-F) of the three membranes on FTO electrodes, respectively.

Fig. S10 The optical profile and AFM images of the PorPor-CMP (A, D), PorPc-CMP (B, E) and PcPc-CMP (C, F) membranes, respectively.

Fig. S11 N_2 adsorption-desorption isotherms(77·K) of nafion-treated PorPor-CMP, PoPc-CMP, and PcPc-CMP(A) and the pore-size distribution of nafion-treated CMPs (B).

Fig. S12 UV-vis absorption spectra of corresponding monomers in DMF solution.

Fig. S13 EIS of PorPor-CMP, PorPc-CMP, and PcPc-CMP under light and dark (A), the R_{ct} of PorPor-CMP, PorPc-CMP, and PcPc-CMP under light and dark (B), the R_{ct} of PorPc-CMP and other polymers from literatures under light (C). The superscript number in the name of each material represents the number of references. ⁵⁻¹³

Fig. S14 The photocurrent response of PorPc-CMP in different pH.

Fig. S15 Tauc plots of TEPP and H₂[Pc(ethynyl)₄]

Fig. S16 Schematic energy band diagrams of TEPP and H₂[Pc(ethynyl)₄].

Fig. S17 Schematic diagram of multi-channel electronic transmission between Donor (TEPP: carmine) and Acceptor (H₂[Pc(ethynyl)₄]: azure).

Fig. S18 UV-vis spectra of the PorPor-CMP + H_2O_2 + TMB system (A), PorPc-CMP + H_2O_2 + TMB system (B), and PcPc-CMP + H_2O_2 + TMB system (C) for different times. Effect of time on the absorbance changes of the above three systems (D).

Fig. S19 The absorbance of the TMB+H₂O₂+CMPs reaction system in the pressure of *p*-benzoquinone (O₂^{•-} scavenger), *D*-histidine (¹O₂ scavenger), and methanol (•OH scavenger) (A). The UV-vis spectra of the TMB+H₂O₂+CMPs reaction system with or without methanol (B).

Fig. S20 Fluorescence spectroscopy of the TA + H_2O_2 and TA + H_2O_2 + CMPs systems (λ_{max} = 312 nm)

Fig. S21 The photocurrent response for 0.05 μM glucose of PorPc-CMP in different pH.

Fig. S22 Photocurrent responses of PorPc-CMP PEC sensor with successive additions of 0.05 μ M glucose and different analytes (albumin: 100mg/ml, globulin: 50 mg/ml, fetuin: 45mg/ml, triglyceride, urea and uric acid: 1mM) into pH=7.0 Tris-HCl solution and glucose oxidase

Fig. S23 Photocurrent responses of five PorPc-CMP sensors to 1 and 10 μ M glucose.

Fig. S24 Response of the PEC sensor during continuous detection of 0.5 μ M glucose under periodic light irradiation for 1600 s.

Fig. S25 The SEM images of side (A) and top view (B) for PorPc-CMP and the TEM images of PorPc-CMP after cyclic test (C)

Fig. S26 Stability over 180 days for the detection of 0.5 µM glucose. (RSD=1.8%)

Fig. S27 Photocurrent responses of PorPc-CMP PEC sensor in different H_2O_2 (A) and glucose (B) concentration with two-electrode system. The relationship between photocurrent and H_2O_2 (C) /glucose (D) concentration.

Compound	Soret Band Q bands		
TEPP (<i>I</i>)	416	516, 551, 591, 648	
TIPP (<i>1</i>)	420	515, 549, 591, 646	
H ₂ Pc(ethynyl) ₄ (/)	334, 387	609, 674	
H ₂ Pc(I) ₄ (<i>I</i>)	335, 379	602, 670	

Table S1. UV–vis absorption spectral data of *free-base* porphyrins TEPP, TIPP and phthalocyanine $H_2Pc(ethynyl)_4$, $H_2Pc(I)_4$ in DMF (I).

Compound	Porphyrin Emissions Phthalocyanine Emissions		
TEPP	628	_	
H ₂ Pc(ethynyl) ₄	-	725	
PorPor-CMP	631	_	
PorPc-CMP	634	725	
PcPc-CMP	-	726	

Table S2. Fluorescence spectra data of monomers and the three CMPs

Table S3 Fitted decay time of these polymers.				
СМР —	Fitted decay time ^a			
	τ_1	τ ₂	τ ₃	
PorPor-CMP	0.3477	4.1357	16.3826	
PorPc-CMP	0.2794	1.8600	8.0308	
PcPc-CMP	0.7212	8.1762	131.3664	

^a Obtained from fluorescence decay spectrum of the polymers recorded in solid state.

Electrode composition	Method	Liner range (µM)	LOD (µM)	Refs.
FeTSPc-GR-Nafion/SPE	Electrochemical	0.2-5000	0.08	14
TOAB/ZnPp-C ₆₀ /GCE	Electrochemical	35-3400	0.27	15
Triple-decker/GO/ITO	Electrochemical	0.05-1800	0.017	16
GC/(Co-TCPP(Fe))₅	Electrochemical	0.4-50	0.15	17
(FePc-CP NSs) ₄	Electrochemical	0.05-1800	0.017	3
NiO/graphene nanocomposite	Electrochemical	250-475	0.77	18
ZnO/Co ₃ O ₄ /NiCo ₂ O ₄ /Ni foam	Electrochemical	0.2–2400	0.16	19
GQDs/AgNPs	Colorimetric	0.1–100	0.033	20
H ₂ TCPP-ZnS	Colorimetric	10-60	15.8	21
Por-NiCo ₂ S ₄	Colorimetric	20-1000	10.06	22
PbS NPs/RGO/NiO nanosheet	PEC	0.05-100 mM	18	23
ITO-TiO ₂ IOPCs- CdS:Mn	PEC	63-4000	19	24
ITO/PbS/Co ₃ O ₄ nanofilm	PEC	5-500	1.2	25
g-C ₃ N ₄ /P ₃ HT	PEC	1-800	0.38	26
BiVO ₄ -rGO	PEC	0.1-2000	0.03	27
PorPor-CMP	PEC	1-100	0.413	This work
PorPc-CMP	PEC	0.05-100	0.013	This work
PcPc-CMP	PEC	1-100	0.56	This work

Table S4 Comparison of the H_2O_2 sensors using various methods

Compound	Mulliken charges	Hirshfeld charges
TEPP	0.079	0.0693
H ₂ [Pc(ethynyl) ₄]	-0.084	-0.0594

Table S5 The calculated charges of TEPP and $H_2[Pc(ethynyl)_4]$ in PorPc-CMP by

Mulliken method and Hirshfeld method

Electode composition	Method	Liner range (µM)	LOD (µM)	Refs.
PAA-rGO/VS-PANI/LuPc ₂ -MFH	Electrochemistry	2000-12000	25	28
CoPc/IL/G/SPCE/PADs	Electrochemistry	10-5000	0.67	29
PAA-VS-PANI/GPL-FePc/GOx-CH	Electrochemistry	1000-20000	6.4	30
Al doped ZnO (AZO) thin film	Photoluminescence	20-20000	6.9	31
MGO-P(4-VBA)	Electrochemistry	1–15 mM	39	32
$TCS\operatorname{-TiO}_2$ nanorods	Electrochemistry	5-1320	2	33
GOx/Au-g-C ₃ N ₄	Electrochemiluminescence	0.5-8000	0.05	34
SDS-MoS ₂ NPs	Colorimetry	5-500	0.57	35
N-GQDs	Colorimetry	25-375	16	36
Au NPs/Cu-TCPP(M)	Colorimetry	10-300	8.5	37
Fe SSN	Colorimetry	0-60	2.1	38
PbS NPs/RGO/NiO nanosheet	PEC	0.1-100000	0.053	23
GOx/BiOI/NiO	PEC	5-10000	1.6	39
ZnS/CuInS ₂ /TiO ₂ /ITO	PEC	0.1-5000	0.035	40
Polymer phenylethnylcopper	PEC	0.5–5000	0.16	41
BiOI/NiO nanofilm	PEC	5-10000	1.6	42
PorPc-CMP	PEC	0.05-5000	0.027	This work

Table S6 Comparison of the glucose sensors using various method

References

- [1] W. Liu, Y. Hou, H. Pan, W. Liu, D. Qi, K. Wang, J. Jiang and X. Yao, *J. Mater. Chem. A*, 2018, **6**, 8349.
- [2] J. Tian and W. Zhang, Prog. Polym. Sci., 2019, 95, 65-117
- [3] W. Liu, H. Pan, C. Liu, Ch. Su, W. Liu, K. Wang, and J. Jiang, ACS Appl. Mater. Interfaces, 2019, 11, 11466–11473

[4] W. Liu, Ch.Wang, L. Zhang, H. Pan, W. Liu, J. Chen, D. Yang, Y. Xiang, K. Wang, J. Jiang and X.
 Yao, J. Mater. Chem. A, 2019, 7, 3112

[5] Q. Ruan, MK. Bayazit, V. Kiran, J. Xie, Y Wang and J. Tang, Chem. Commun., 2019, 55, 7191-7194

[6] Z. Wei, J. Hu, K. Zhu, W. Wei, X. Ma, and Y. Zhu, Appl. Catal. B Environ., 2018, 226, 616-623

[7] L. Mao, M. Gao, X. Xue, L. Yao, W. Wen, X. Zhang and S. Wang, Anal. Chim. Acta, 2019, 1059, 94-102

[8] F. Liang and Y. Zhu, Appl. Catal. B Environ., 2016, 180, 324-329

[9] Y. Fang, X. Li and X. Wang, ACS Catal., 2018, 8, 8774–8780

[10] D. Jeon, N. Kim, S. Bae, Y. Han and J. Ryu, ACS Appl. Mater. Interfaces, 2018, 10, 8036–804411

[11] Y. Fang, Y. Xu, X. Li, Y. Ma and X. Wang, Angew. Chem., 2018, 130, 9897–9901

[12] J. Wang, L. Xu, T. Wang, S. Chen, Z. Jiang, R. Li, Y. Zhang and T. Peng, *Adv. Funct. Mater.*, 2021, 31, 2009819

[13] Z. Chen, J. Wang, S. Zhang, Y. Zhang, J. Zhang, R. Li and T. Peng, ACS Appl. Energy Mater., 2019, 2, 5665–5676

[14] M. F. Zhu, N. Li and J. S. Ye, *Electroanalysis*, 2012, **24**, 1212-1219.

- [15] H. Wu, S. H. Fan, X. Y. Jin, H. Zhang, H. Chen, Z. Dai and X. Y. Zou, Anal. Chem., 2014, 86, 6285-6290.
- [16] Z. N. Yu, L. Zou, Y. L. Chen and J. Z. Jiang, ACS Appl. Mater. Interfaces, 2016, 8, 30398-30406.
- [17] Y. X. Wang, M. T. Zhao, J. F. Ping, B. Chen, X. H. Cao, Y. Huang, C. L. Tan, Q. L. Ma, S. X. Wu, Y.
 F. Yu, Q. P. Lu, J. Z. Chen, W. Zhao, Y. B. Ying and H. Zhang, *Adv. Mater.* 2016, 28, 4149-4155.
- [18] Z. Y. Yu, H. J. Li, X. M. Zhang, N. K. Liu and X. Zhang, *Talanta*, 2015, **144**, 1-5.
- [19] B. Xue, K. Z. Li, S. Y. Gu, L. L. Zhang and J. H. Lu, Sensors. Actuators B Chem, 2018, 262, 828.
- [20] S. Chen, X. Hai, X. W. Chen and J. H. Wang, Anal. Chem., 2014, 86, 6689–6694.
- [21] Q. Y. Liu, P. P. Chen, Z. Xu, M. M. Chen, Y. N. Ding, K. Yue, J. Xu, Sens. Actuators B Chem, 2017, 251, 339-348.
- [22] Y. L. He, N. Li, W. K. Li, X. X. Zhang, X. Zhang, Z. X. Liu, Q. Y. Liu, Sens. Actuators B Chem, 2021, 326, 128850.
- [23] Q. Z. Han, H. Y. Wang, D. Wu and Q. Wei, *Biosens. Bioelectron*, 2021, **173**, 112803.
- [24] B. Çakıroğlu and M. Özacar, Biosens. Bioelectron, 2019, 141, 111385.
- [25] P. P. Wang, L. Cao, Y. Chen, Y. Wu and J. W. Di, ACS Appl. Nano Mater, 2019, 2, 2204–2211.
- [26] Y. Wang, Y. X. Cheng, N. Wu and Z. H. Zhang, ACS Appl. Nano Mater, 2020, 3, 8598–8603.
- [27] J. Shu, Z. L. Qiu, Q. Zhou, Y. X. Lin, M. H. Lu and D. P. Tang, Anal. Chem., 2016, 88, 2958–2966.
- [28] H. Sagura, S. Komathia, M. A. Khan, A. G. Gurek, A. Hassan, *Biosens. Bioelectron*, 2017, 92, 638-645.
- [29] S. Chaiyo, E. Mehmeti, W. Siangproh, T. L. Hoang, H. P. Nguyen, O. Chailapakul, Kurt. Kalcher, Biosens. Bioelectron, 2018, 102, 113-120.
- [30] H. Sagura, K. Shanmuga Sundaram, E. N. Kaya, M. Durmuş, T. V. Basovad, A. Hassan, *Biosens. Bioelectron*, 2019, **139**, 111323
- [31] J. Ghosh, R. Ghosh and P. K. Giri, Sens. Actuators B Chem, 2018, 254, 681-689.
- [32] X. C. Xu, X. H. Niu, S. W. Wu, X. B. Zou and J. M. Pan, Sens. Actuators B Chem, 2018, 268, 430-437.

- [33] Z. J. Yang, Y. Tang, J. Li, Y. C. Zhang and X. Y. Hu, *Biosens. Bioelectron*, 2014, **54**, 528-533.
- [34] J. J. Jiang, D. Chen and X. Z. Du, Sens. Actuators B Chem, 2017, 251, 256-263.
- [35] K. Zhao, W. Gu, S. S. Zheng, C. L. Zhang and Y. Z. Xian, *Talanta*, 2015, **141**, 47-52.
- [36] L. P. Lin, X. H. Song, Y. Y. Chen, M. C. Rong, T. T. Zhao, Y. R. Wang, Y. Q. Jiang and X. Chen, Anal Chim Acta, 2015, 869, 89-95.
- [37] Y. Huang, M. T. Zhao, S. K. Han, Z. C. Lai, J. Yang, C. L. Tan, Q. L. Ma, Q. P. Lu, J. Z. Chen, X. Zhang, Z. C. Zhang, B. Li, B. Chen, Y. Zong and H. Zhang, *Adv. Mater.*, 2017, **29**, 1700102.
- [38] M. Chen, H. Zhou, X. K. Liu, T. W. Yuan, W. Y. Wang, C. Zhao, Y. Y Zhao, F. Y. Zhou, X. Wang, Z. G. Xue, T. Yao, C. Xiong and Y. E. Wu, *Small*, 2020, **16**, 2002343.
- [39] L. Zhang, Y. F. Ruan, Y. Y. Liang, W. W. Zhao, X. D. Yu, J. J. Xu and H. Y. Chen, *ACS Appl. Mater. Interfaces*, 2018, **10**, 3372–3379.
- [40] S. Zhen, G. C. Fan, Z. M. Li, F. X. Gao and X. L. Luo, Anal. Chem., 2018, 90, 10681–10687.
- [41] Y. X. Wen, S. G. Liu, B. X. Tao, H. Q. Luo and N. B. Li, Sensors Actuators B Chem, 2020, 304, 1272796.
- [42] L. Zhang, Y. F. Ruan, Y. Y. L, W. W. Zhao, X. D. Yu, J. J. Xu and H. Y. Chen, ACS Appl. Mater. Interfaces, 2018, 10, 3372-3379.