Supporting Information

Dual roles of graphitic carbon nitride in the electrosynthesis of ammonia under ambient conditions

Lu Liu, Luofu Min, Wen Zhang*, Yuxin Wang*

State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China

*Corresponding authors

E-mail addresses: zhang_wen@tju.edu.cn (W Zhang)
vyxwang@tju.edu.cn (Y Wang)
Experimental section

Membrane pretreatment

Before NRR tests, the Nafion 212 membrane was pretreated by heating it in H$_2$O$_2$ (3 wt%) aqueous solution at 80 °C for 1h, ultrapure water at 80 °C for 1h and 0.5 mol/L H$_2$SO$_4$ aqueous solutions for another 1h, respectively.

Preparation of the Gas diffusion layer (GDL)

Cathode preparation: Typically, approximately 3 mg catalyst and 20 μL of Nafion solution (5 wt%) were dispersed into a mixture of H$_2$O:IPA (50:50) by sonicating for 1 h to form a homogeneous ink and hand-sprayed onto a carbon paper electrode with the area of 1.1×3.6 cm2 and dried under the ambient condition to serve as the cathode.

Anode preparation: The ink solution of Pt/C was prepared following the same procedure outline above and was subsequently sprayed onto a carbon paper with the Pt loading of 0.2 mg/cm2, which was used as the anode.

Membrane electrode assembly (MEA)

The GDL after spraying the catalyst and on the pretreated Nafion 212 membrane were hot-pressed together at 10 MPa and 120 °C for 120 s. The active composite material was located between these two layers. The MEA was fabricated for electrochemical nitrogen reduction reaction with an active geometric cross-sectional area of 3.96 cm2 (Figure S1).

Detection of ammonia

The amount of ammonia in the effluent of cathode and anode, as well as in the soaking solution of the used MEA, was determined using the indophenol blue method with some modification\(^1\). In detail, a certain volume cathodic absorption solution removed from the vessel, and subsequently added into 0.5 mL of 50 g/L (5 wt%) salicylic acid solution
containing sodium citrate and sodium hydroxide. And Then, 0.1 mL of 10 g/L (1 wt %) C₅FeN₆Na₂O (sodium nitroferricyanide) and 0.1 mL of 0.05 mol/L NaClO containing 2 mol/L NaOH were also added into the above solution. After standing at room temperature for 1 hour, the UV-Vis absorption spectrum was measured. The absorbance data of the spectrophotometer were measured on the Beijing Purkinje General TU-1900 ultraviolet-visible (UV-Vis) spectrophotometer. The concentration of indophenol blue was determined using the absorbance at a wavelength of 697 nm. The concentration-absorbance curves were calibrated using a standard ammonia chloride solution with a series of concentrations. The fitting curve ($y = 0.8775x +0.0358$, $R^2 = 0.9998$) shows good linear relation of absorbance value with ammonia concentration by four times independent calibrations (Figure S5).

Detection of hydrazine

The hydrazine in the effluent of cathode and anode, as well as in the soaking solution of the used MEA, was estimated by the method of Watt and Chrisp. A mixture of p-dimethylaminobenzaldehyde (p-C₉H₁₁NO, 5.99 g), HCl (concentrated, 30 mL), and C₂H₅OH (300 mL) was used as a color reagent. The calibration curve was plotted as follows. A series of 5 mL standard N₂H₄ solutions with the concentrations of 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8 and 1.0 µg/mL in 0.005 mol/L H₂SO₄ solution were prepared, and separately mixed with 5 mL above prepared color reagent. After stirring the mixed solution for 10 min at room temperature, the absorbance of the resulting solution was measured at 455 nm, and the yields of N₂H₄ were estimated from a standard curve (Figure S6). In this study, the byproduct of N₂H₄ is not detected, implying the good selectivity of the as-synthesized catalyst.

Faradaic efficiency (FE)

The Faradaic efficiency for ENRR was defined as the quantity of electric charge used for synthesizing ammonia divided by the total charge pass through the electrodes during the
electrolysis. The total amount of ammonia produced was measured using indophenol blue colorimetric methods. Assuming three electrodes were needed to produce one NH$_3$ molecule, the Faradaic efficiency can be calculated as follows:

$$\text{FE(\%)} = \frac{3 \times n \times F}{I(A) \times t(s)} \times 100\%$$

Where: F is Faraday constant, $I(A)$ is the average of current during the reaction.

N-15 labeling experiments

Labeled 15N isotopic labeling g-C$_3^{15}$N$_4$ was used as the catalyst to prove that the N atom in the catalyst is involved in the formation of ammonia, subsequently, the N vacancy is created, and then the N vacancy could adsorb and activate N$_2$. We used g-C$_3^{15}$N$_4$ as the catalyst, feeding by Ar or N$_2$ in the cathode and H$_2$ in the anode, then used MEA was soaked in 0.005 M H$_2$SO$_4$ aqueous solutions to extract the 14NH$_4^+$ and 15NH$_4^+$ inside the membrane after the ENRR test.

Indophenol assays3 were prepared from 0.5 ml of aliquots solution in the effluent of cathode and the soaking solution of the used MEA, reacted with 0.1 ml of 1% phenolic solution in 95% ethanol/water (1.2 g of phenol in 10 ml of 95% ethanol/water), 0.1mL of 0.5% Na[Fe(CN)$_5$NO] in water and 0.375 ml of 1% NaClO in alkaline sodium citrate solution (2g of sodium citrate and 0.1g of NaOH in 10 mL of water mixed with 2.5 mL of 5% NaClO solution). The assayed aliquots were allowed to develop 1 hour before spectrophotometric testing. LC-MS studies were carried on an ACQUITY UPLC I-Class/UPCC/M-Class/SYNAPT G2-SI (LCMS–ESI). For comparison, the indophenol assay was prepared from the soaking solution of the used MEA for LC-MS detection when the unlabeled g-C$_3$N$_4$ was used as the cathode catalyst. In this study, atmosphere control experiments found that the electroreduction N$_2$ to NH$_3$ over the catalyst g-C$_3$N$_4$ may obey the MvK like mechanism.
DFT Calculation

In this study, only the tri-s-triazine-based g-C₃N₄ was investigated because it was energetically favored and was the most stable phase of C₃N₄ at ambient conditions. All of the atoms were fully optimized. The DFT calculations were performed using Gaussian09. For geometry optimization and frequency calculations, the UB3LYP functional was adopted. The 6-31G(d,p) basis set was used for C and N atoms in combination with the D3(BJ) empirical dispersion correction. The fringe C/N atoms were compensated by H to eliminate boundary influence. All structures have converged to the minimum energy point, and there is no false frequency.
Figures:

Figure S1 Flow chart of electrochemical synthesis of ammonia

1—DC regulated power supply, 2—H\textsubscript{2} gas cylinder, 3—N\textsubscript{2}/Ar gas cylinder, 4—rotor flow meter, 5—bubbling humidifier, 6—preheating pipe, 7—ammonia absorber, 8—single-cell.

Figure S2 Absolute calibration of the indophenol blue method using ammonium chloride in 0.005 M H\textsubscript{2}SO\textsubscript{4} solutions of known concentration as standards. (a) UV-vis curves of indophenol assays with NH\textsubscript{4}+ ions after incubated for 1 hour and (b) calibration curve used for estimation of NH\textsubscript{3} by NH\textsubscript{4}+ ion concentration. The absorbance at 697 nm was measured by UV-vis spectrophotometer, and the fitting curve shows good linear relation of absorbance with NH\textsubscript{4}+ ion concentration (y = 0.8775x +0.0358, R2 = 0.9998) of four times independent calibration curves.
Figure S3 The calibration curve used for estimation of N$_2$H$_4$ concentration. The absorbance at 455 nm was measured by UV-vis spectrophotometer, and the fitting curve shows good linear relation of absorbance with N$_2$H$_4$ concentration ($y = 1.186x + 0.00142, R^2 = 0.9997$) of four times independent calibration curves.

Figure S4 N$_2$ adsorption-desorption isotherms of g-C$_3$N$_4$
Figure S5 The TGA of g-C₃N₄

The TGA result is shown in Figure S5. The beginning temperature of the weight loss is approximately at 600 °C, indicating the g-C₃N₄ has good thermal stability.

Figure S6 (a) UV-vis absorption spectra of the cathodic absorption with indophenol indicator obtained after electrochemical reaction for 2 hours when only fed by Ar in the cathode chamber (applied potential −1.0 V vs RHE), (b) the amount of NH₃ in cathodic absorption over time when the cathode is supplied with Ar.

In this work, the applied potential is -1.0 V vs RHE. The anode cannot provide H⁺ when no H₂ fed in the anode chamber, because the H₂O cannot be electrolyzed to produce H⁺ under this applied potential. No ammonia was detected when only fed by Ar in the cathode and no H₂ fed in the anode chamber under -1.0 V vs RHE, suggesting that there are no NH₃ adsorbed on the catalyst surface. But when simultaneously fed Ar in the cathode and H₂ in the anode chamber, the absorbance of the cathodic absorption with indophenol indicator is relatively
higher than that without H₂ in the anode, indicating the NH₃ is formed in the cathode. And the NH₃ is formed by the surface N in g-C₃N₄ and the H⁺ from the anode.

![Figure S7](image)

Figure S7 UV−vis absorption spectra of the ammonia in the soaking solution of the used Nafion 212 membrane obtained after electrochemical reaction for 8 hours when the cathode fed by Ar or N₂ followed by the indophenol assay. The inset photos show the color change of the solutions by the indophenol assay.

After using the g-C₃N₄ as catalyst for ENRR, the obtained soaking solutions of the used Nafion 212 were treated with phenol in the presence of NaClO as oxidizing reagent and Na₂[Fe(CN)₅NO] as catalyst. As is shown in Figure S8, both solutions show distinctive absorption at 630 nm assigned to indophenol. When fed by Ar or N₂ in the cathode chamber, NH₃ can be detected in the used Nafion 212 after electrochemical reaction for 8 hours. And the absorbance of the soaking solution with indophenol indicator when the cathode fed by N₂ is relatively higher than that of fed by Ar, indicating that g-C₃N₄ not only acts as the nitrogen source but also acts as an electrocatalyst for the nitrogen reduction reaction. In addition, no ammonia was detected in the fresh Nafion 212.
As observed in Figure S8, there is no notable difference in FT-IR spectra of the g-C$_3$N$_4$ after reaction, suggesting its good chemical stability.

The high magnification TEM images of the fresh g-C$_3$N$_4$ in Ar and N$_2$ are presented in Fig. S9 From the TEM images, no significant morphological changes are observed in the fresh and used samples after ENRR in Ar and N$_2$.

Figure S8 FT-IR spectra of the catalyst g-C$_3$N$_4$ before/after the reaction.

Fig. S9 TEM images of the fresh g-C$_3$N$_4$ (a-d), the used g-C$_3$N$_4$ in Ar after ENRR (e-h), and the used g-C$_3$N$_4$ in N$_2$ after ENRR (i-l).
Fig. S10 Schematic of the designed electrochemical cell for ATR-FTIR

Fig. S11 In situ FTIR spectra obtained on the surface of g-C$_3$N$_4$ (-1.0 V vs RHE) for (a) Ar and (b) N$_2$ bubbled 0.005 M H$_2$SO$_4$ aqueous solution. The background for the system has been subtracted from the spectra.
Figure S12 The amount of ammonia in the cathodic absorption solution over time under the catalyst g-C$_3$N$_4$ when the cathode is supplied with N$_2$.

Figure S13 The optimized structure of g-C$_3$N$_4$ monolayer. The gray, blue, and purple spheres represent the carbon, nitrogen, and hydrogen atoms, respectively, and different nitrogen sites are labeled.
The formation of NH$_3$ via abstraction of g-C_3N_4 surface nitrogen atom by protonation on N1 site and leave behind N vacancy.

A proton absorbs on the N1 site in the catalyst g-C_3N_4 and forms (C)$_3$–NH (g-C_3N_4*H), which releases 0.63 eV. Then the second H atom was absorbed on the N1 site to form C–NH$_2$ with releasing 2.29 eV and two of the C–N bonds between the N1 site with the C of tri-s-triazine were cleaved. This step is followed by adding the third proton on C-NH$_2$ to generated the C–NH$_3$, an exothermic step that which releases around 0.61 eV. The last step is the desorption of the NH$_3$ molecule, which is an endothermic process (barrier of 1.02 eV), and then leaves behind an N vacancy.
The formation of NH$_3$ via abstraction of g-C$_3$N$_4$ surface nitrogen atom by protonation on N2 site and leave behind N vacancy.

As shown in Figure S12, the first H atom coupling to the N2 site in g-C$_3$N$_4$ to form (C)$_2$–NH is a spontaneous process with releasing 2.18 eV. This step is followed by spontaneously reacting with another H to form (C)$_2$–NH$_2$ ($\Delta G = -0.40$ eV). Then, the third H coupling to (C)$_2$–NH$_2$ to form C-NH$_3$, and one of the C-N bonds between the N2 site and the adjacent C atoms is cleaved. The detachment of NH$_3$ requires 0.67 eV and then leaves behind the N vacancy in the N2 site.
Figure S16 The formation of NH$_3$ via abstraction of g-C$_3$N$_4$ surface nitrogen atom by protonation on N3 site and leave behind N vacancy.

The N3 site also can generate NH$_3$ by hydrogenation process and the detailed steps are shown in Figure S13. The first H coupling to the N3 site to form (C)$_2$-NH and one of the C–N bonds between the N3 site and neighboring C atoms is cleaved with releasing 0.35 eV. Then two consecutive H couplings to (C)$_2$–NH to form (C)$_2$–NH$_2$ and NH$_3$ also are barrierless. And the detachment of NH$_3$ requires 0.15 eV.
Figure S17 The refilling process of an N vacancy (N2 site) on g-C$_3$N$_4$ and in the activation of N$_2$ molecule on N vacancy. Relative energies are given to the reactants g-C$_3$N$_{4-x}$.

The insertion of N$_2$ into the N2 site vacancy is endothermic, with an adsorption energy of 4.43 eV. After that, the H atoms were adsorbed on the activated N$_2$ molecule, and then the N-H bonds are formed. The first H coupling to the adsorbed *N$_2$ to *N$_2$H is barrierless ($\Delta G = -2.42$ eV). The second H coupling to *N$_2$H to form *N$_2$H$_2$ requires 0.81 eV. This step is followed by adding the third proton on *N$_2$H$_2$ generated the *N$_2$H$_3$, an exothermic step that which releases around 5.25 eV. The last step is the desorption of the NH$_3$ molecule ($\Delta G = -5.53$ eV).
Figure S18 The refilling process of an N vacancy (N2 site) on g-C3N4 and in the activation of N2 molecule on N vacancy. Relative energies are given to the reactants g-C3N4-x.

The process of N vacancy refilling on N3 site was also simulated computationally. The energetics of the catalyst regenerated process and the second NH3 formation process are illustrated in Figure S18. We begin with the adsorption of molecule nitrogen close the N3 vacancy, which is endothermic with the N2 molecule adsorption energy of around 8.15 eV. After the N2 molecule adsorbed on the N3 site vacancy, the H atoms were adsorbed on the activated N2 molecule, and then the N-H bonds are formed (Figure S18c-e). It can be found that the first H coupling to the adsorbed *N2 to *N2H is barrierless (ΔG = −3.95 eV). The second H coupling to *N2H to form *N2H2 requires 3.97 eV. This step is followed by adding the third proton on *N2H2 generated the *N2H3, an exothermic step that which releases around 5.60 eV. The last step is the desorption of the NH3 molecule (ΔG = −4.60 eV). The complete catalytic cycle involving surface N abstraction by protons and N vacancy refilling on N3 site is summarized in Figure S20.
Figure S19 Proposed catalytic cycle for N$_2$ reduction on g-C$_3$N$_4$(N2 site). In phase A, a surface N atom in the catalyst is abstracted by H to form NH$_3$ and an N vacancy. In phase B, the N$_2$ molecule is bridged in the N vacancy of N1 site. In phase C, the bridged N$_2$ is activated by H, under the formation of the second NH$_3$ molecule and the catalyst is regenerated.
Figure S20 Proposed catalytic cycle for N$_2$ reduction on g-C$_3$N$_4$(N3 site). In phase A, a surface N atom in the catalyst is abstracted by H to form NH$_3$ and an N vacancy. In phase B, the N$_2$ molecule is bridged in the N vacancy of N1 site. In phase C, the bridged N$_2$ is activated by H, under the formation of the second NH$_3$ molecule and the catalyst is regenerated.
Tables:

Table S1 The amount of ammonia, the ammonia production rate, and the Faradaic efficiency over the catalyst g-C$_3$N$_4$ for nitrogen reduction at -1.0 V vs RHE for 8 h (repeated experiment)

<table>
<thead>
<tr>
<th>Cell</th>
<th>$M_c/\mu g$</th>
<th>$M_a/\mu g$</th>
<th>$M_m/\mu g$</th>
<th>$M_t/\mu g$</th>
<th>$R/(mol \cdot cm^{-2} \cdot s^{-1})$</th>
<th>$R_{ave}/(mol \cdot cm^{-2} \cdot s^{-1})$</th>
<th>$FE/%$</th>
<th>$FE_{ave}/%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$,Pt/C</td>
<td>Nafion</td>
<td>g-C$_3$N$_4$,N$_2$,NH$_3$</td>
<td>57.65</td>
<td>6.38</td>
<td>274.39</td>
<td>338.42</td>
<td>1.75×10^{-10}</td>
<td>1.57</td>
</tr>
<tr>
<td>H$_2$,Pt/C</td>
<td>Nafion</td>
<td>g-C$_3$N$_4$, N$_2$,NH$_3$</td>
<td>46.55</td>
<td>5.30</td>
<td>269.91</td>
<td>321.76</td>
<td>1.66×10^{-10}</td>
<td>1.34</td>
</tr>
<tr>
<td>H$_2$,Pt/C</td>
<td>Nafion</td>
<td>g-C$_3$N$_4$,N$_2$,NH$_3$</td>
<td>51.01</td>
<td>4.11</td>
<td>224.99</td>
<td>280.11</td>
<td>1.44×10^{-10}</td>
<td>1.26</td>
</tr>
</tbody>
</table>

Note: M_c is the amount of ammonia in the cathodic absorption, M_a is the amount of ammonia in the anode absorption, M_m is the amount of ammonia in the soaking solution of the used Nafion 212 membrane obtained after electrochemical reaction, M_t is the total of ammonia.

Table S2 The amount of ammonia over the catalyst g-C$_3$N$_4$ when the cathode is supplied with N$_2$/Ar at -1.0 V vs RHE for 8 h

<table>
<thead>
<tr>
<th>Cell</th>
<th>$M_c/\mu g$</th>
<th>$M_a/\mu g$</th>
<th>$M_m/\mu g$</th>
<th>$M_t/\mu g$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$,Pt/C</td>
<td>Nafion</td>
<td>g-C$_3$N$_4$,N$_2$,NH$_3$</td>
<td>59.69</td>
<td>6.97</td>
</tr>
<tr>
<td>H$_2$,Pt/C</td>
<td>Nafion</td>
<td>g-C$_3$N$_4$,Ar,NH$_3$</td>
<td>21.65</td>
<td>3.30</td>
</tr>
</tbody>
</table>

During the ENRR, most of the produced NH$_3$ was trapped in the Nafion membrane, because of the strong interactions between NH$_3$ and Nafion membrane. In the 0.005M H$_2$SO$_4$ absorption solution, the produced NH$_3$ could be predominantly detected in the cathode exhausts, which is expected as NH$_3$ is only produced at the cathode. When the cathode is supplied with N$_2$, the amount of ammonia in the cathodic absorption and the used Nafion 212 membrane is higher than that of the cathode is supplied with Ar, suggesting that the catalyst g-C$_3$N$_4$ can electro-catalyze N$_2$ to NH$_3$.
XPS results

Table S3 Surface elemental contents of fresh and used g-\(\text{C}_3\text{N}_4\) catalysts without 5 wt% Nafion

<table>
<thead>
<tr>
<th>Samples</th>
<th>Element content (at%)</th>
<th>C/N atomic ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>N</td>
</tr>
<tr>
<td>Fresh g-(\text{C}_3\text{N}_4)</td>
<td>46.09</td>
<td>52.12</td>
</tr>
<tr>
<td>Used g-(\text{C}_3\text{N}_4)(Ar)</td>
<td>46.36</td>
<td>50.67</td>
</tr>
<tr>
<td>Used g-(\text{C}_3\text{N}_4)(N(_2))</td>
<td>46.26</td>
<td>51.34</td>
</tr>
</tbody>
</table>

Note: To rule out the influence of carbon paper and the Nafion on catalyst g-\(\text{C}_3\text{N}_4\) composition, the catalysts g-\(\text{C}_3\text{N}_4\) were dispersed in 0.005 M \(\text{H}_2\text{SO}_4\) aqueous solution, and Pt foil was used as the work electrode with Ar/N\(_2\) at -0.1 V vs RHE. The samples for XPS analysis were without 5 wt% Nafion solution.

Table S4 N species content (at%) of fresh and used g-\(\text{C}_3\text{N}_4\) catalysts

<table>
<thead>
<tr>
<th>Sample</th>
<th>C=N-C (N(_2) site)</th>
<th>N-(C)(_3) (N(_1)site and N(_3)site)</th>
<th>C-NH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh g-(\text{C}_3\text{N}_4)</td>
<td>47.07%</td>
<td>30.21%</td>
<td>22.72%</td>
</tr>
<tr>
<td>Used g-(\text{C}_3\text{N}_4)(Ar)</td>
<td>50.35%</td>
<td>28.94%</td>
<td>20.71%</td>
</tr>
<tr>
<td>Used g-(\text{C}_3\text{N}_4)(N(_2))</td>
<td>48.08%</td>
<td>29.53%</td>
<td>22.39%</td>
</tr>
</tbody>
</table>
EA results

Table S5 The Elementar analysis of the fresh and used g-C$_3$N$_4$ catalysts without 5 wt% Nafion solution.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Element content (wt%)</th>
<th>C/N atomic ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>N</td>
</tr>
<tr>
<td>Fresh g-C$_3$N$_4$</td>
<td>33.535±0.025</td>
<td>61.415±0.055</td>
</tr>
<tr>
<td>Used g-C$_3$N$_4$(Ar)</td>
<td>33.370±0.060</td>
<td>59.935±0.025</td>
</tr>
<tr>
<td>Used g-C$_3$N$_4$(N$_2$)</td>
<td>33.215±0.005</td>
<td>60.160±0.050</td>
</tr>
</tbody>
</table>

Note: The samples for elemental analysis were without 5 wt% Nafion solution.

To further rule out the influence of Nafion on catalyst g-C$_3$N$_4$ composition, the catalysts g-C$_3$N$_4$ were dispersed in 0.005 M H$_2$SO$_4$ aqueous solution, and Pt foil was used as the work electrode with Ar/N$_2$ at -0.1 V vs RHE. And then we used elemental analysis to determine the content of C, N, and H in the fresh/used g-C$_3$N$_4$. Since Nafion solution was not added, and combine with XPS data, so that g-C$_3$N$_4$ contained four elements C, H, N, and O. After the element contents of C, H, and N were determined, the remaining was considered as O. As listed in Table S5, the atomic ratios of carbon to nitrogen in the samples are 0.63 ~ 0.65, lower than 0.75 for the ideal g-C$_3$N$_4$, and the hydrogen and oxygen elements detected are indicative of the incomplete thermal condensation of urea. The content of C element is almost unchanged before and after the reaction (Table S5). The contents of N and O elements vary before and after the reaction. Before the reaction, the content of N in the fresh g-C$_3$N$_4$ is 61.415 ± 0.055 wt%. When fed by Ar in the cathode, the content of N in the used g-C$_3$N$_4$ decreased from 61.415 ± 0.055 wt% to 59.935 ± 0.025 wt%. These results reveal that the surface N atoms in g-C$_3$N$_4$ might be used to produce NH$_3$, and the N vacancies are created. Compared with the Ar atmosphere, the content of N in the used g-C$_3$N$_4$ has a slight increase (from 59.935± 0.025 wt% to 60.160 ± 0.050 wt%) when fed by N$_2$ in solution, suggesting the N vacancies could be replenished with N$_2$ molecules. But the content of N in the used g-C$_3$N$_4$
under N_2 supplying is slightly lower than that of fresh g-C_3N_4, indicating that the N vacancies might not be completely refilled with the N_2. That could explain why the rate of producing NH_3 in the second cycle of the alternating test by fed Ar is slower than that of the first cycle. In addition, after the reaction, the content of the O element was higher than that in the fresh catalyst, which was also consistent with the XPS data.

References:

