Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

[Supporting Information]

Hypercrosslinking chiral Brønsted acids into porous organic polymers for efficient heterogeneous asymmetric organosynthesis

Yuwei Zhang,^{1,3} Zhenwei Zhang,¹ Si Ma,¹ Ji Jia,¹ Hong Xia,² and Xiaoming Liu,^{*1}

¹College of Chemistry, Jilin University, Changchun, 130012, P.R. China.

²State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Technology, Jilin University, Changchun 130012, P.R. China.

³Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, P.R. China

Email: xm_liu@jlu.edu.cn

Contents

Section 1. General Information

Section 2. Materials and Synthesis

Section 3. Characterization of BNPPA-HCPs

Section 4. Catalytic Data

Section 5. Compared with recent homogeneous catalysts

Section 6. NMR and HPLC Spectra of Catalytic Products

Section 7. References

Section 1. General Information

¹H spectra were recorded on a Avance III-400 NMR spectrometer, where chemical shifts (δ in ppm) were determined with a residual proton of the solvent as standard. Solid-state ¹³C CP/MAS NMR measurement was recorded using a Bruker AVANCE III 400 WB spectrometer at a MAS rate of 5 kHz and a CP contact time of 2 ms. Elemental analyses were carried out on an Elementar model vario EL cube analyzer. The infrared spectra were recorded from 400 to 4000 cm-1on an Avatar FT-IR 360 spectrometer by using KBr pellets. UV/Vis spectra have been carried out on a Perkin Elmer Lambda 950 spectrophotometer within the wavelength range 200–700 nm. Field emission scanning electron microscopy was performed on a SU8020 model HITACHI microscope. Transmission electron microscopy was performed on a JEOL model JEM-2100 microscope. The sample was prepared by drop-casting a supersonic methanol suspension of polymer onto a copper grid. Powder X-ray diffraction data were recorded on a PANalytical BV Empyrean diffractometer by depositing powder on glasssubstrate, from $2\theta = 1.5^{\circ}$ to 40° with 0.02° increment at 25 °C. Thermogravimetric analysis (TGA) was performed on a TA Q500 thermogravimeter by measuring the weight loss while heating at a rate of 10 °C min⁻¹ from room temperature to 800 °C under nitrogen. Nitrogen sorption isotherms were measured at 77 K with a JW-BK 132F analyzer. Before measurement, the samples were degassed in vacuum at 120 °C for more than 10 h. The Brunauer-Emmett-Teller (BET) method was utilized to calculate the specificsurface areas and pore volume. X-Ray photoelectron spectroscopy (XPS) was measured with an ESCALAB 250 spectrometer (Thermo Scientific, Waltham, MA) with monochromatic Al Karadiation (1486.6 eV). The content of residual Fe (0.2~0.4 wt%) in obtained polymers was determined by Perkin-Elmer ICP-OES optima 3300DV spectroscopy. The enantiomeric excesses were determined by HPLC analysis using a Waters Technologies 1525 Series instrument (column: CHIRACEL OD-H, 0.46 cm ø, 25 cm). The catalytic products were quantified by GC analysis (Shimadzu GC-2014C) using an SE-30 column (30 m × 0.25 mm × 0.25 μm). The melting point was recorded on a melting point apparatus (MPA100, Stanford Research Systems, Inc.). GC-MS was performed using a QP2010 gas chromatography mass spectrometer (GC-2010 coupled with a GC-MS QP-2010, Shimadzu) equipped with a DB-5MS column (30 m \times 0.25 mm \times 0.25 μ m, Agilent).

The column temperature was programmed from 50 °C (2 min hold) to 270 °C at 10 °C min⁻¹. Mass spectra were obtained by the electron-impact (EI) at 70 eV using the fullscan mode.

Section 2. Materials and Synthesis

The reactants used in the experiment were purchased from Energy Chemical unless otherwise stated. Deuterated solvents and n-Butyllithium solution in hexanes (1.6 M) were obtained from J&K Scientific. Formaldehyde dimethyl acetal (FDA), anhydrous FeCl₃ and 1,2-dichloroethane (DCE) were obtained from Aladdin. Other organic solvents for reactions were distilled over activated MS 4Å and used under nitrogen atmosphere.

Synthesis of (R)-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene^[1]

To a flame-dried flask fitted with a stir-bar and addition funnel was added NaH (60% dispersion in mineral oil, 1.3 g, 54.2 mmol, 3.0 equiv) and THF (30 mL). The reaction was cooled to 0 °C. R-(+)-BINOL (5.0 g, 17.5mmol, 1.0 equiv) was then added as one portion. The reaction mixture was stirred at 0 °C for 1 h. MOMCI (2.9 mL, 38.3 mmol, 2.2 equiv) was then added dropwise. The reaction was allowed to stir at 0 °C for 10 min. After completion, the reaction mixture was quenched with saturated aq. NH₄Cl, extracted with Et₂O, and washed with brine. The organic layer was dried with MgSO₄ and the solvent was removed via rotary evaporation. The crude product mixture was purified via column chromatography (EtOAc/hexane: 1/40), white foam (5.7 g, 92% yield). ¹H NMR (400 MHz, CDCl₃) δ : 7.99 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.91 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.19-7.17(d, *J* = 8.0 Hz, 2H, Ar*H*), 5.12-5.01 (m, 4H, -OCH₂OCH₃), 3.17 (s, 6H, - OCH₂OCH₃) ppm.

Synthesis of (R)-3,3'-diiodo-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene^[2]

To a flame-dried flask equipped with a stir bar was added MOM-protected binapthyl (3.0 g, 8.0 mmol 1.0 equiv), and then Et₂O (30 mL). 1.6 M ⁿBuLi (15 mL, 20 mmol, 2.5 equiv) was added to the reaction. The reaction mixture was allowed to stir for 4 hours at room temperature. The reaction mixture was then cooled to -78 °C and I₂ (3.02 g, 35.4 mmol, 2.5 equiv) was added as one portion. The reaction was allowed to slowly warm to room temperature and stir overnight. After completion, the reaction mixture was quenched with saturated aq. NH₄Cl, extracted with Et₂O, and washed with 10% aq. Na₂S₂O₃ followed by brine solution. The organic layer was dried with MgSO₄ and the solvent was removed via rotary evaporation. The crude product mixture was then purified via column chromatography with eluent (EtOAc/hexane: 1/40) on silica gel. Light yellow powder. (5.2 g, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ : 8.75 (s, 2H, ArH), 7.81 (d, *J* = 8.0Hz, 2H, ArH), 7.47-7.43 (m, 2H, ArH), 7.31 (d, *J* = 8.0Hz, 2H, ArH), 4.48, 4.72 (m, 4H, -OCH₂OCH₃), 2.62 (s, 6H, -OCH₂OCH₃) ppm.

Synthesis of (R)-3,3'-diaryl-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene^[3]

(R)-3,3'-diiodo-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene (1.0 equiv) and $Pd(PPh_3)_4$ (10 mol%) were mixed in DME (40 mL) in a round bottom flask at room temperature under an argon atmosphere. To the mixture with stirring were added phenylboronic acid (3.5 equiv) and 2 M aqueous Na₂CO₃ solution (5.2 equiv). The resulting mixture was stirred and heated to reflux for 10 h, cooled to room temperature, and passed through a pad of Celite. The organic solution was evaporated to give a residue. The residue was dissolved in CH₂Cl₂, washed with

saturated aqueous NH₄Cl, water, brine, dried over Na₂SO₄, and concentrated to give a crude product. Purification was carried by column chromatography (EtOAc/hexane: 1/10) to give product.

(R)-3,3'-diiodo-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene. White foamy product, yield: 85%. ¹H NMR (400 MHz, CDCl₃) δ: 7.95 (s, 2H, Ar*H*), 7.90 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.77 (d, *J* = 8.0Hz, 2H, Ar*H*), 7.49-7.29 (m, 12H, Ar*H*), 4.41-4.36 (m, 4H, -OCH₂OCH₃), 2.34(s, 6H, -OCH₂OCH₃) ppm.

(R)-3,3'-Bis(4-methoxyphenyl)-2,2'-Bis(methoxymethoxy)-1,1'-binaphthyl. Light yellow powder, yield: 87%. ¹H NMR (400 MHz, CDCl₃) δ: 7.94 (s, 2H, Ar*H*), 7.91 (d, *J* =8.0Hz, 2H, Ar*H*), 7.74-7.71 (m, 4H Ar*H*), 7.45-7.41 (m, 4H Ar*H*), 7.04-6.80 (m, 6H, Ar*H*), 4.45-4.39 (m, 4H, -OCH₂OCH₃), 3.90 (s, 6H, ArOCH₃), 2.36 (s, 6H, -OCH₂OCH₃) ppm.

(R)-3,3'-Bis(2-naphthyl)-2,2'-Bis(methoxymethoxy)-1,1'-binaphthyl. White foamy product, yield: 91%.¹H NMR (400 MHz, CDCl₃) δ: 8.26 (s, 2H, Ar*H*), 8.10 (s, 2H, Ar*H*), 8.0-7.92 (m, 10H Ar*H*), 7.56-7.33 (m, 10H Ar*H*), 4.48-4.45 (m, 4H, -OCH₂OCH₃), 2.36 (s, 6H, -OCH₂O OCH₃) ppm.

(R)-3,3'-Bis(9-phenanthryl)-2,2'-Bis(methoxymethoxy)-1,1'-binaphthyl. White powder, yield, 90 %. ¹H NMR (400 MHz, CDCl₃) δ: 8.83-8.76 (m, 4H, Ar*H*), 8.13-7.84 (m, 10H Ar*H*), 7.73-7.34 (m, 10H Ar*H*), 4.62-4.30 (m, 4H, -OC*H*₂OCH₃), 2.18-2.13 (d, 6H, OC*H*₃) ppm.

(**R**)-3,3'-Bis(9-anthryl)-2,2'-Bis(methoxymethoxy)-1,1'-binaphthyl. White powder, yield, 91 %. ¹H NMR (400 MHz, CDCl₃) δ : 8.56 (s, 2H, Ar*H*), 8.11-7.92 (m, 8H, Ar*H*), 7.94 (d, *J* = 8.0 Hz, 2H Ar*H*), 7.82 (d, *J* = 8.0 Hz, 2H Ar*H*), 7.67 (d, *J* = 8Hz, 2H Ar*H*), 7.54-7.40 (m, 10H, Ar*H*), 7.25-7.22 (t, *J* = 12.0Hz, 2H, Ar*H*), 4.30-4.23 (m, 4H, - OCH₂OCH₃), 1.89 (s, 6H, -OCH₂OCH₃) ppm.

Synthesis of (R)-3,3'-diaryl-2,2'-dihydroxy-1,1'-dinaphthyl^[3b]

Ph-BNPPA: Ar = phenyl 4-MeO-Ph-BNPPA: Ar = 4-methoxyphenyl 2-Naph-BNPPA: Ar = 2-naphthyl 9-Phen-BNPPA: Ar = 9-phenanthryl 9-An-BNPPA: Ar = 9-anthracyl 6N HCl (10.0 mL) was added to a solution of MOM protected binol (1.1 mmol) in dioxane (15 mL). The resulting solution was heated to 60 °C for 12 h. The reaction mixture was cooled to room temperature and quenched by addition of sat. NaHCO₃ solution. The product was extracted into CH_2Cl_2 and washed with water, then brine. The combined organics were dried over Na₂SO₄, filtered and concentrated to yield the crude product as a pink solid. Trituration/washing with CH_2Cl_2 :Et₂O (1:10) provided pure product.

(*R*)-3,3'-diphenyl-2,2'-dihydroxy-1,1'-dinaphthyl. White powder, yield, 90%. ¹H NMR
(400 MHz, CDCl₃) δ: 8.05 (s, 2H, Ar*H*), 7.96 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.77 (d, *J* = 4.0 Hz, 4H, Ar*H*), 7.54 (t, *J* = 12.0 Hz, 4H, Ar*H*), 7.46-7.41 (m, 4H, Ar*H*), 7.37-7.33 (m, 4H, Ar*H*), 7.29-7.27 (m, 2H, Ar*H*), 5.38 (s, 2H, Ar-O*H*) ppm.

(*R*)-3,3'-bis(4-methoxyphenyl)-2,2'-dihydroxy-1,1'-binaphthyl. White powder (yield, 95). ¹H NMR (400 MHz, CDCl₃) δ: 8.24(s, 2H, Ar*H*), 8.17(s, 2H, Ar*H*), 8.0-7.90(m, 10H, Ar*H*), 7.56-7.31(m, 10H, Ar*H*), 5.50(s, 2H, Ar-O*H*), 3.90(s, 6H, ArOCH₃) ppm.

(*R*)-3,3'-bis(2-naphthyl)-2,2'-dihydroxy-1,1'-binaphthyl. Light yellow powder, yield: 95%. ¹H NMR (400 MHz, CDCl₃) δ: (s, 2H, Ar*H*), 8.16 (s, 2H, Ar*H*), 8.0-7.90 (m, 10H, Ar*H*), 7.56-7.31 (m, 10H, Ar*H*), 5.38 (s, 2H, Ar-O*H*) ppm.

(R)-3,3'-bis(9-phenanthryl)-2,2'-dihydroxy-1,1'-binaphthyl. Light yellow powder, yield: 94%. ¹H NMR (400 MHz, CDCl₃) δ: 8.85-8.76 (m, 4H, Ar*H*), 8.12-8.10 (m, 10H, Ar*H*), 8.00-7.88 (m, 7H, Ar*H*), 8.71-7.44 (m, 15H, Ar*H*), 5.34 (s, 2H, Ar-O*H*) ppm.

(R)-3,3'-bis(9-anthryl)-2,2'-dihydroxy-1,1'-binaphthyl. Light yellow powder, yield:
 93%. ¹H NMR (400 MHz, CDCl₃) δ: 8.60(s, 2H, ArH), 8.13-7.88(m, 12H, ArH), 7.70-7.43(m, 14H, ArH) 5.08(s, 2H, Ar-OH) ppm.

Synthesis of (R)-3,3'-Diaryl-1,1'-binaphthyl phosphate^[4]

(R)-3,3'-diphenyl-[1,1'-binaphthalene]-2,2'-diol (833 mg, 1.90 mmol, 1.0 equiv.) was suspended in anhydrous pyridine (7.0 mL). To the mixture was added freshly distilled POCl₃ (355 μ L, 3.80 mmol, 2.0 equiv.) in one portion, which maintain a gentle reflux. After 12 h of additional stirring at ambient temperature, the reaction mixture was pull into water 50 mL. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The resultant crude phosphoroyl chloride (light yellow foamy solid), then it was refluxed in 6N HCl (10 mL) for 3 h. Absolute CH₂Cl₂ (15 mL) was then shaken with the mixture, and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3×20 mL), then dried over anhydrous Na₂SO₄, filtered and liberated of solvents under reduced pressure.

(R)-3,3'-Dipheny-1,1'-binaphthyl phosphate (Ph-BNPPA). White powder, yield: 92%.
¹H NMR (400 MHz, CDCl₃) δ: 7.95-7.91 (m, 6H, Ar*H*), 7.73(d, *J* = 8 Hz, 4H, Ar*H*), 7.47-7.38 (m, 4H, Ar*H*), 7.25-7.18 (m, 4H, Ar*H*), 7.09-7.04 (m, 2H, Ar*H*) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 146.07, 145.97, 143.74, 141.74, 141.30, 137.82, 134.37, 132.28, 130.89, 130.06, 128.30, 128.03, 127.09, 126.99, 126.20, 125.87, 125.39, 132.12 ppm.

(R)-3,3'-Bis(4-methoxyphenyl)-1,1'-binaphthyl phosphate (4-MeOph-BNPPA). Light yellow powder, yield: 82%. ¹H NMR (400 MHz, CDCl₃) δ: 7.95 (s, 4H, Ar*H*), 7.55-7.47 (m, 6H, Ar*H*), 7.38-7.27 (m, 6H, Ar*H*), 6.77 (d, *J* = 8Hz, 4H, Ar*H*), 3.56 (s, 4H, ArOC*H*₃) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 158.93, 145.24, 145.15, 133.85, 133.82, 131.88, 131.47, 131.06, 130.80, 129.50, 128.29, 127.04, 126.16, 125.69, 122.71, 113.59, 55.02 ppm.

(R)-3,3'-Bis(2-naphthyl)-1,1'-binaphthyl phosphate (2-Naph-BNPPA). Light yellow powder, yield: 91%.¹H NMR (400 MHz, CDCl₃) δ: 8.24-7.93 (m, 10H, Ar*H*), 7.80-7.31 (m, 12H, Ar*H*), 7.18 (m, 2H, Ar*H*) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 146.88, 146.79, 144.47, 139.88, 136.11, 134.43, 133.23, 132.28, 131.13, 130.94, 128.41, 128.36, 127.45, 127.27, 127.04, 126.20, 125.77, 125.24, 124.54, 123.58 ppm.

(R)-3,3'-Bis(9-phenanthryl)-1,1'-binaphthyl phosphate (9-Phen-BNPPA). Light yellow powder, yield: 83%.¹H NMR (400 MHz, DMSO) δ: 8.91 (m, 4H, Ar*H*), 8.31-8.02 (m, 8H, Ar*H*), 7.73-7.55 (m, 16H, Ar*H*) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 146.37, 146.26, 134.07, 133.10, 132.74, 132.50, 131.58, 131.55, 131.38, 130.31, 130.10, 129.73, 129.40, 129.19, 127.73, 127.66, 127.53, 127.46, 127.16, 126.83, 126.54, 123.69, 123.32, 122.26 ppm.

(**R**)-**3**,**3**'-**Bis**(**9**-anthryl)-**1**,**1**'-binaphthyl phosphate (**9**-An-BNPPA). Light yellow powder, yield: 85%).¹H NMR (400 MHz, CDCl₃) δ: 8.30-7.96 (m, 10H, Ar*H*), 7.83-7.32 (m, 14H, Ar*H*), 7.11 (m, 4H, Ar*H*) ppm. ¹³C NMR (100 MHz, CDCl₃) δ: 133.24, 133.04, 132.68, 131.16, 131.04, 130.80, 130.28, 128.41, 128.22, 127.45, 127.27, 126.61, 125.92, 125.49, 125.05, 124.76, 122.98 ppm.

Ph-BNPPA-HCP. To the mixture of Ph-BNPPA (60 mg, 0.12 mmol) and FDA (40 μ L, 0.5 mmol, 4 equiv.) in 2 mL 1,2-dichloroethane, dry FeCl₃ (74 mg, 0.5 mmol, 4 equiv.) was added at room temperature. The mixture was heated to 80 °C and stirred for 24 h under a nitrogen atmosphere. After cooling down to room temperature, the precipitated polymer network was filtered and washed with methanol, distilled water, dichloromethane and acetone successively, until the filtrate was nearly colorless. The further purification of the network was carried out by Soxhlet extraction from

methanol for 12 h. The product was dried in vacuum for 24 h at 60 °C to give dark brown powder (56.1 mg, 90.1%).

4-MeOph-BNPPA-HCP. 4-MeOph-BNPPA (50 mg, 0.083 mmol), FDA (29.5 μ L, 0.33 mmol, 4eq), dry FeCl₃ (54.1 mg, 0.6 mmol, 4eq), and 2 mL of 1,2-dichloroethane were used in this polymerization (42.3 mg, 89.5%).

2-Naph-BNPPA-HCP. 2-Naph-BNPPA (50.0 mg, 0.09 mmol), FDA (32.0 μ L, 0.36 mmol, 4eq), dry FeCl₃ (58.0 mg, 0.36 mmol, 4eq), and 2 mL of 1,2-dichloroethane were used in this polymerization (46.2 mg, 84%).

9-Phen-BNPPA-HCP. 9-Phen-BNPPA (50.0 mg, 0.071 mmol), FDA (25.5 μL, 0.28 mmol, 4eq), dry FeCl₃ (46.5 mg, 0.36 mmol, 4eq), and 2 mL of 1,2-dichloroethane were used in this polymerization (49.8 mg, 92%).

9-An-BNPPA-HCP. 9-An-BNPPA (50.0 mg, 0.071 mmol), FDA (25.5 μ L, 0.28 mmol, 4eq), dry FeCl₃ (46.5 mg, 0.36 mmol, 4eq), and 2 mL 1,2-dichloroethane were used in this polymerization (49.7 mg, 92%).

General Procedure for the Enantioselective Transfer Hydrogenation by Chiral Brønsted Acid-based Hypercrosslinked Polymers

A centrifuge vial was charged with 3-Phenyl-2*H*-1,4-benzoxazin (10.5 mg, 0.19 mmol), Hantzsch dihydropyridine (15.8 mg, 0.24 μ mol, 1.25 eq.) and the catalyst (5 mol%). CHCl₃ (1.5 mL) was added and the mixture was stirred for 4 h at room temperature. In case of a homogeneous reaction the solvent was removed in vacuum. In case of a heterogeneous reaction the catalyst was separated by centrifugation. The remaining solid catalyst was washed with CHCl₃ and again separated by centrifugation. The organic layers were combined and the solvents were removed in vacuum. The conversion was determined by ¹H-NMR analysis of the crude product. The yield was determined after column chromatography (SiO₂, hexane/AcOEt = 40:1).

Figure S1. TGA curves of BNPPA-HCPs under nitrogen atmosphere. The TGA patterns suggested that all polymers are thermally stable, that indicated by retaining more than 90% of their weight up to 300 °C. The weight loss for BNPPA-HCPs at low temperature may be due to the adsorbed matters in the pores.

Figure S2. PXRD curves of BNPPA-HCPs. The PXRD patterns do not give any strong diffraction peaks, indicating that all polymers are amorphous materials.

Figure S3. FT-IR spectra of BNPPA-HCPs and corresponding monomers. From FT-IR spectra, we found that the polymer also retains some characteristic peaks of the corresponding monomer. In addition, the weak peaks at ~2920 cm⁻¹ could be attributed to C–H stretching vibration, which could originate from the structure of – CH_2 – in the polymer network.

Figure S4. Solid-state ¹³C CP-MAS NMR spectra of BNPPA-HCPs. The resonance peaks at 30~40 ppm can be assigned to the carbon in the methylene linker formed from the Friedel-Crafts reaction. The characteristic signals from 110 to140 ppm are assignable to substituted and nonsubstituted aromatic carbon in the polymer backbone.

Figure S5. UV-vis DR spectra of BNPPAs and corresponding polymers BNPPA-HCPs.

Figure S6. XPS pattern of 9-An-BNPPA-HCP recorded from 0 to 1200 eV.

HCP (c) 2-Naph-BNPPA-HCP (d) 9-Phen-BNPPA-HCP (e) 9-An-BNPPA-HCP.

Figure S8. Nitrogen sorption isotherms of BNPPA-HCPs at 77 K: (a) Ph-BNPPA-HCP (b) 4-MeOPh-BNPPA-HCP (c) 9-Phen-BNPPA-HCP.

Section 4. Catalytic Data

Figure S9. The effect of An-BNPPA-HCP loading on the reaction performances. Specific reaction process: 3-Phenyl-2H-1,4-benzoxazin (0.19 mmol), Hantzsch dihydropyridine (0.24 mmol), CHCl₃ (1.5 mL) and the catalyst (5 mol%, 2 mol%, 1 mol%, and 0.5 mol%) was added in 4 centrifuge vials and the mixture was stirred for 4h respectively at 25 °C.

Figure S10. ¹H-NMR spectra of **1a**, **2a** and *in situ* NMR spectra after different reaction time. 3-Phenyl-2H-1,4-benzoxazin (10.5 mg, 0.05 mmol), Hantzsch dihydropyridine (15.8 mg, 0.6 mmol, 1.25 eq.) and the catalyst (2 mol%). CDCl₃ (1.5 mL) was added in 4 centrifuge vials and the mixture was stirred for 10 min, 20 min, 30 min and 60 min at 25 °C, respectively, and then the catalyst is filtered through the membrane. The filtrate was tested by NMR.

Figure S11. The effect of reaction time on the reaction performances in situ NMR experiments.

Figure S12. Reusability of 9-An-BNPPA-HCP in the asymmetric transfer hydrogenation. (a) FT-IR spectra of 9-An-BNPPA-HCP before and after ten cycles. (b) FE-SEM images of 9-An-BNPPA-HCP before and after ten cycles.

Table S1. Pore size distribution of BNPPA-HCPs on the nitrogen adsorption isotherms.

Polymers	BET surface area (m² g⁻¹)	Langmuir surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)	Micropore volume (cm ³ g ⁻¹)
Ph-BNPPA-HCP	1098	1232	1.26	0.45
4-MeOPh-BNPPA-HCP	782	874	0.47	0.31
2-Naph-BNPPA-HCP	857	961	0.53	0.24
9-Phen-BNPPA-HCP	1026	1154	0.89	0.41
9-An-BNPPA-HCP	1001	1128	0.70	0.40

Scheme S1. Large-scale asymmetric transfer hydrogenation of 3-phenyl-1,4benzoxazine using An-BNPPA-HCP as a heterogeneous catalyst.

A centrifuge vial was charged with 3-Phenyl-2*H*-1,4-benzoxazin (1.0 g, 4.8 mmol), Hantzsch dihydropyridine (1.52 g, 6.0 mmol, 1.25 eq.) and the catalyst (2 mol%). CHCl₃ (15 mL) was added and the mixture was stirred for 4 h at room temperature. In case of a homogeneous reaction the solvent was removed in vacuum. In case of a heterogeneous reaction the catalyst was separated by centrifugation. The organic layers were combined and the solvents were removed in vacuum. The yield was determined after column chromatography (SiO₂, hexane / AcOEt = 40:1), which was 0.93 g (92%) of a white solid.

Section 5. Compared with recent homogeneous catalysts

Catalyst system	Substrate	Hydride source	Solvent	т (°С)	t (h)	Conv. (%)	Yield (%)	ee (%)
	benzoxazines			ĺ	1	_	91-99	94-98
9-An-BNPPA-HCP	benzoxazinones	Hantzsch	CHCl₃	25	24	_	88-93	97-99
	quinolines	dihydropyridine			12	_	83-98	91-99
⁵ ^a BINOL-based	dihydro-2H-	Hantzsch						
polymer network	benzoxazine	dihydropyridine	CHCl₃	Rt.	24	99	-	47-56
^{5b} BNPPA-derived		Hantzsch						
polymer network	quinolines	dihydropyridine	CHCl₃	Rt.	4	99	-	87-98
	3-Phenyl							
	Benzoxazine		THF	Rt.	24	-	95	94
	3-Phenyl	Hantzsch						
³⁷ BICz-POF-1	Benzoxazinone	dihydropyridine	CHCl3	40	24	-	95	96
	2-							
	Phenylquinoline		IHF	40	24	-	95	90
^{5d} NAD(P)H analogues								
(<i>R</i>)-6a/ Sm(OTf)₃/	benzoxazinones	H₂	CHCl₃	50	72	-	89-98	92-98
[Ru(p-cymene)I ₂] ₂								
^{5e} NAD(P)H Models	benzoxazinones		CHCl₃	40	22	-	83-97	92-99
(R)-1f/Bis(4-	benzoxazine		CHCl3	40	48	_	85	91
nitrophenyl)		H ₂						
phosphate/[Ru(p-	quinolines		2/1	40	48	-	94-99	83-90
cymene)I ₂] ₂			5/1					
5f(S)-3,3'-Diaryl-1,1'-		4,5-	THF/benze					
binaphthyl phosphate	benzoxazines	dihydropyrrolo[1	ne 2/1	40	38	-	87-96	84-92
540:1		,2-a]quinoxalines	DI 05				62.00	07.00
³⁹ Bisborane adducts	quinolines	H ₂	PhCF ₃	-20	24	_	63-99	87-99
5nBisphosphine	quinolines	H ₂	CH ₂ Cl ₂	/0/8	18	-	72-99	79-90
				0				
shiral biophacebina	quinclines	ц	DCM/iPrOH	25	10		72.00	01 00
ligand/[Ph/COD)Cl]	quinoimes	Π2	2/1	25	40	_	75-99	91-99
⁵ SPIROL-based								
dinhosnhinite ligands	quinolines					-	79-99	86-96
(SPIRAPO)/		H ₂	THF	Rt.	10			
[Ir(COD)Cl] ₂	benzoxazinones					-	95-99	73-85
^{5k} (S)-								
SegPhos/[Ir(COD)Cl] ₂	benzoxazine	H ₂	benzene	Rt.	15	-	91-98	84-92
^{5/} Mn ^I model/ planar-								
chiral ferrocene-	benzoxazines					-	74-85	71-88
based NAD(P)		H ₂	CHCl₃	80	48			
analogue/ La(OTf) ₃	benzoxazinones					-	58-90	82-96
^{5m} (R,R)-Ru-catalyst	quinolines	H ₂	iPrOH	25	24	-	89-95	94-98
⁵ⁿ (R,R)-Ru-MsDPEN	benzoxazines	H ₂	toluene	40	12	-	94-98	82-98
⁵⁰ (+)-Xyl-P16C6-Phos/			ethyl	-				
[Ir(COD)2]BF4/ NaBArF	quinolines	H ₂	acetate	Rt.	24	-	96-98	90-97

Table S2. Compared with recent homogeneous catalysts for asymmetric transferhydrogenation.

Section 6. NMR and HPLC Spectra of Catalytic Products

¹H NMR (400 MHz, CDCl₃) δ : 7.43 (m, 5H), 6.90-6.83 (m, 2H), 6.76-6.69 (m, 2H), 4.53 (d, *J* = 8.0 Hz, 1H), 4.33 (d, *J* =12.0 Hz, 1H), 4.05 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 143.65, 139.31, 134.05, 128.93, 128.44, 127.33, 121.61, 119.03, 116.72, 115.53, 71.23, 71.03, 54.30 ppm. HPLC conditions: Chiracel OD-H, n-hexane/2-propanol = 80/20, flow rate = 1 mL min⁻¹, major enantiomer: t_R = 10.63 min; minor enantiomer: t_R = 14.86 min.

¹H NMR (400 MHz, CDCl₃) δ : 7.36-7.29 (d, *J* = 8.0 Hz, 2H), 6.93-6.91 (d, *J* = 8.0 Hz, 2H), 6.86-6.79 (m, 1H), 6.72-6.66 (m, 1H), 4.48-4.43 (m, 1H), 3.99-3.95 (m,1H), 3.82 ppm (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 159.66, 143.53, 136.10, 131.16, 128.33, 121.44, 118.90, 116.58, 115.35, 114.23, 71.12, 55.35, 53.61 ppm. HPLC conditions: Chiracel OD-H, n-hexane/2-propanol = 80/20, flow rate = 1mL min⁻¹, major enantiomer: t_R = 11.12 min; minor enantiomer: t_R = 18.16 min.

¹H NMR (400 MHz, CDCl₃) δ : 7.40 (m, 2H), 7.10-7.06 (m, 2H), 6.87-6.80 (m, 2H), 6.73-6.67 (m, 2H), 4.51 (d, *J* = 8.0 Hz,1H), 4.27 (d, *J* = 8.0Hz,1H), 3.99-3.94 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 163.91, 161.46, 143.54, 135.03, 133.76, 128.81, 119.13, 116.67, 115.87, 115.65, 115.48, 70.93, 53.55 ppm. HPLC conditions: Chiracel OD-H, n-hexane/2-propanol = 80/20, flow rate=0.6 mL min⁻¹, major enantiomer: t_R = 10.30 min; minor enantiomer: t_R = 17.36 min.

¹H NMR (400 MHz, CDCl₃,) δ : 7.38-7.34 (m, 4H), 6.81-6.81 (m, 2H), 6.74-6.68 (m, 2H), 4.51 (d, *J* = 8.0Hz,1H), 4.24 (d, *J* = 8.0 Hz, 1H), 3.99-3.94 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃,) δ : 143.52, 137.79, 134.10, 133.62, 129.04, 128.56, 121.65, 119.18, 116.70, 115.51, 70.74, 53.63, 161.46, 143.62, 128.81, 119.13, 116.67, 115.87, 115.65, 115.48, 70.93, 53.55 ppm. HPLC conditions: Chiracel OD-H, n-hexane/2-propanol = 80/20, flow rate = 0.6 mL min⁻¹, major enantiomer: t_R = 12.22 min; minor enantiomer: t_R = 24.00 min.

¹H NMR (400 MHz, CDCl₃,) δ : 7.42 (m, 4H), 6.89-6.82 (m, 2H), 6.74-6.68 (m, 2H), 4.53 (d, *J* = 8.0 Hz, 1H), 4.32 (d, *J* = 8.0 Hz, 1H), 4.04-3.99 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 143.50, 138.31, 131.98, 128.86, 122.18, 121.57, 119.19, 116.68, 115.46, 70.71, 53.68 ppm. HPLC conditions: Chiracel OD-H, n-hexane/2-propanol = 80/20, flow rate = 1 mL min⁻¹, major enantiomer: t_R = 13.36 min; minor enantiomer: t_R = 26.28 min.

¹H NMR (400 MHz, CDCl₃,) δ : 7.60-7.59 (m, 1H), 7.51-7.49 (m, 1H), 7.37-7.35 (m, 1H), 7.30-7.28 (m, 1H), 6.89-6.83 (m, 2H), 6.77-6.70 (m, 2H), 4.53-4.50 (m, 1H), 4.32-4.28 (m, 1H), 4.02-3.97 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 143.51, 141.67, 131.47, 130.45, 130.31, 125.97, 123.00, 121.72, 119.25, 116.74, 115.59, 70.68, 53.79 ppm. HPLC conditions: Chiracel OD-H, n-hexane/2-propanol = 80/20, flow rate = 1 mL min⁻¹, major enantiomer: t_R = 12.94 min; minor enantiomer: t_R = 19.19 min.

¹H NMR (400 MHz, CDCl₃,) δ : 7.43-7.34 (m, 5H), 7.07-7.01 (m, 2H), 6.90-6.81 (m, 2H), 5.08 (s, 1H), 4.22 (br s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 165.12, 140.94, 136.36, 132.34, 129.02, 127.49, 125.17, 120.45, 117.02, 114.84, 59.32 ppm. HPLC conditions: Chiracel OD-H, n-hexane/2-propanol = 80/20, flow rate = 1 mL min⁻¹, major enantiomer: t_R = 11.79 min; minor enantiomer: t_R = 17.66 min.

¹H NMR (400 MHz, CDCl₃,) δ : 7.33-7.31 (m, 2H), 7.05-7.00 (m, 2H), 6.90-6.79 (m, 4H), 4.99 (s, 1H), 4.22 (br s, 1H), 3.79 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 165.54, 160.74, 141.00, 132.58, 128.79, 128.40, 125.14, 120.36, 116.97, 114.87, 114.39, 58.81, 55.33 ppm; HPLC conditions: Chiracel OD-H, n-hexane/2-propanol=80/20, flow rate=1 mL min⁻¹, major enantiomer: t_R = 14.02 min; minor enantiomer: t_R = 40.33 min.

¹H NMR (400 MHz, CDCl₃,) δ : 7.48-7.45 (m, 2H), 7.40-7.37 (m, 2H), 6.73-6.70 (m, 2H), 6.64-6.60 (m, 1H), 6.38 (d, *J* = 8.0Hz, 1H), 5.04 (br s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 171.66, 144.06, 136.88, 134.57, 131.97, 128.94, 122.47, 121.47, 118.89, 114.70, 113.46, 62.07, 60.88 ppm. HPLC conditions: Chiracel OD-H, n-hexane/2-propanol = 80/20, flow rate = 1 mL min⁻¹, major enantiomer: t_R = 19.23 min; minor enantiomer: t_R = 41.66 min.

¹H NMR (400 MHz, CDCl₃) δ : 7.47-7.34 (m, 5H), 7.11-7.07 (m, 2H), 6.75-6.59 (m, 2H), 6.57-6.55 (m, 1H, Ar-H), 4.52-4.49 (m, 1H), 4.04 (s, 1H), 3.04-2.78 (m, 2H), 2.23-2.02 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 144.86, 144.76, 128.62, 126.95, 126.59, 120.91, 117.20, 114.03, 56.30, 31.03, 26.43 ppm. HPLC conditions: Chiracel OD-H, n-hexane/2-propanol = 80/20, flow rate = 1 mL min⁻¹, major enantiomer: t_R = 8.37 min; minor enantiomer: t_R = 11.07 min.

¹H NMR (400 MHz, CDCl₃,) δ : 7.48-7.46 (m, 2H), 7.28-7.25 (m, 2H), 7.04-7.00 (m, 2H), 6.69-6.65 (m, 1H), 6.57-6.55 (m, 1H), 4.43-4.40 (m, 2H), 3.97 (br s, 1H), 2.95-2.87 (m, 1H), 2.75-2.68 (m, 1H), 2.13-2.07 (m, 1H), 2.00-1.90 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 165.53, 160.07, 141.00, 132.58, 128.79, 128.14, 125.14, 120.36, 116.97, 114.87, 114.39, 58.81, 55.33 ppm. HPLC conditions: Chiracel OD-H, n-hexane/2propanol = 80/20, flow rate = 1 mL min⁻¹, major enantiomer: t_R = 10.33 min; minor enantiomer: t_R = 19.33 min.

¹H NMR (400 MHz, CDCl₃,) δ : 7.33 (d, *J* = 8.0 Hz, 2H), 7.01 (m, 2H), 6.91 (d, *J* = 8.0 Hz, 2H), 6.67-6.64 (m, 2H), 6.54 (d, *J* = 8.0 Hz, 2H), 4.40 (d, *J* = 8.0 Hz, 1H), 3.82 (s, 3H), 2.98-2.73 (m, 2H), 2.11-1.93 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 158.98, 144.84, 136.91, 129.30, 127.65, 126.87, 120.89, 117.13, 113.97, 113.94, 55.74, 55.33, 31.11, 26.57 ppm. HPLC conditions: Chiracel OD-H, n-hexane/2-propanol = 80/20, flow rate = 1 mL min⁻¹, major enantiomer: t_R = 8.50 min; minor enantiomer: t_R = 13.60 min.

¹H NMR (400 MHz, CDCl₃,) δ : 7.92-7.88 (m, 4H), 7.60-7.52 (m, 3H), 7.14-7.09 (m, 2H), 6.78-6.74 (m, 1H), 6.66 (d, *J* = 8.0 Hz, 1H), 4.68-4.64 (m, 1H), 4.14 (br s, 1H), 3.07-2.99 (m, 1H), 2.87-2.80 (m, 1H), 2.29-2.11 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 144.75, 142.28, 133.48, 133.02, 129.38, 127.91, 127.74, 127.01, 126.21, 125.82, 125.15, 124.92, 121.01, 117.29, 114.10, 56.40, 31.00, 26.47 ppm. HPLC conditions: Chiracel OD-H, n-hexane/2-propanol = 80/20, flow rate = 1 mL min⁻¹, major enantiomer: t_R = 12.22 min; minor enantiomer: t_R = 22.08 min.

¹H NMR (400 MHz, CDCl₃) δ : 7.39-7.38 (m, 1H), 7.03-6.98 (m, 2H), 6.68-6.65 (m, 1H), 6.57-6.55 (m, 1H), 6.35-6.34 (m, 1H), 6.22-6.21 (m, 1H), 4.56-4.53 (m, 1H), 4.13 (br s, 1H), 2.92-2.84 (m, 1H), 2.80-2.73 (m, 1H), 2.26-2.10 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 156.96, 143.76, 141.62, 129.27, 126.89, 120.97, 117.56, 114.35, 110.18, 105.21, 49.70, 26.92, 25.54 ppm. HPLC conditions: Chiracel OD-H, n-hexane/2-propanol = 80/20, flow rate = 1 mL min⁻¹, major enantiomer: t_R = 7.09 min; minor enantiomer: t_R = 7.69 min.

¹H NMR (400 MHz, CDCl₃) δ : 7.29-7.28 (m, 1H), 7.11-7.06 (m, 4H), 6.80-6.76 (m, 1H), 6.63(d, *J* = 12.0 Hz, 1H), 4.84-4.81 (m, 1H), 4.21 (br s, 1H), 3.06-2.85 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 149.02, 144.08, 129.37, 127.00, 126.74, 124.15, 123.64, 120.98, 117.76, 114.41, 52.06, 31.90, 26.24 ppm. HPLC conditions: Chiracel OD-H, n-hexane/2-propanol = 80/20, flow rate = 1 mL min⁻¹, major enantiomer: t_R = 10.91 min; minor enantiomer: t_R = 14.64 min.

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	7.445	30681817	50.36	2137549	51.41
2	8.154	30241138	49.64	2020464	48.59

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	7.092	6465286	95.68	497879	95.32
2	7.687	291732	4.32	24430	4.68

Section 7. References

1. T. R. Wu, L. Shen, J. M. Chong, Org. Lett., 2004, 6, 2701-2704.

2. C. Michon, F. Medina, M. Abadie, F. Agbossou-Niedercorn, *Organometallics*, 2013, **32**, 5589–5600.

3. (*a*) M. Yamanaka, J. Itoh, K. Fuchibe, T. Akiyama, *J. Am. Chem. Soc.*, 2007, **129**, 6756–6764; (*b*) F. Romanov-Michailidis, M. Romanova-Michaelides, M. Pupier, A. Alexakis, *Chem. Eur. J.*, 2015, **21**, 5561–5583.

4. W. Hu, J. Zhou, X. Xu, W. Liu, L. Gong, Org. Synth., 2011, 88, 406-417.

5. (a) C. Bleschke, J. Schmidt, D. S. Kundu, S. Blechert and A. Thomas, Adv. Synth. Catal., 2011, 353, 3101-3106; (b) D. S. Kundu, J. Schmidt, C. Bleschke, A. Thomas and S. Blechert, Angew. Chem. Int. Ed., 2012, 51, 5456-5459; (c) X. Zhang, A. Kormos and J. Zhang, Org. Lett., 2017, 19, 6072-6075; (d) J. Wang, Z. H. Zhu, M. W. Chen, Q. A. Chen and Y. G. Zhou, Angew. Chem. Int. Ed., 2019, 58, 1813-1817; (e) J. Wang, Z. B. Zhao, Y. Zhao, G. Luo, Z. H. Zhu, Y. Luo and Y. G. Zhou, J. Org. Chem., 2020, 85, 2355-2368; (f) Z. P. Chen, M. W. Chen, R. N. Guo and Y. G. Zhou, Org. Lett., 2014, 16, 1406-1409; (g) X. Li, J. J. Tian, N. Liu, X. S. Tu, N. N. Zeng and X. C. Wang, Angew. Chem. Int. Ed., 2019, 58, 4664-4668; (h) X. F. Cai, W. X. Huang, Z. P. Chen and Y. G. Zhou, Chem. Commun., 2014, 50, 9588-9590; (i) J. Wen, R. Tan, S. Liu, Q. Zhao and X. Zhang, Chem. Sci., 2016, 7, 3047-3051; (j) S. Sun and P. Nagorny, Chem. Commun., 2020, 56, 8432-8435; (k) K. Gao, C.-B. Yu, D.-S. Wang and Y.-G. Zhou, Adv. Synth. Catal., 2012, 354, 483-488; (I) H. J. Pan and X. Hu, Angew. Chem. Int. Ed., 2020, 59, 4942-4946; (m) Y. Liu, F. Chen, Y. M. He, C. Li and Q. H. Fan, Org. Biomol. Chem., 2019, 17, 5099-5105; (*n*) J. Qin, F. Chen, Y.-M. He and Q.-H. Fan, *Org. Chem. Front.*, 2014, **1**, 952-955; (*o*) X. C. Zhang, Y. H. Hu, C. F. Chen, Q. Fang, L. Y. Yang, Y. B. Lu, L. J. Xie, J. Wu, S. Li and W. Fang, Chem. Sci., 2016, 7, 4594-4599.