Supporting Information

Highly Promoted Electrocatalytic Activity of Spinel $CoFe_2O_4$ by Combination with $Er_{0.4}Bi_{1.6}O_3$ as a Bifunctional Oxygen Electrode for Reversible Solid Oxide Cells

Doyeub Kim^{a,†}, Imdadullah Thaheem^{b,†}, Hyeongmin Yu^a, Jeong Hwa Park^b, and Kang Taek Lee^{a,*}

^aDepartment of Mechanical Engineering, KAIST, Daejeon, 34141, Republic of Korea ^bDepartment of Energy Science and Engineering, DGIST, Daegu 42988, Republic of Korea

[†] Equally contributed to this work

* Corresponding Authors: leekt@kaist.ac.kr

Contents:

Table. S1, Fig. S1-S8

Elementary reaction		Reaction order (n)	Ref.
Dissociative adsorption	$O_{2(g)} \leftrightarrow 2O_{ad}$	~1	[1, 2]
Charge transfer	$O_{ad} + e^- \leftrightarrow O_{ad}^-$	~3/8	[2, 3]
Surface diffusion	$O_{ad} \leftrightarrow O_{TPB}$	~1/4	[1, 3]
Charge transfer at TPBs	$O_{TPB}^{-} + e^{-} \leftrightarrow O_{TPB}^{2-}$	~1/8	[3]
Oxygen ion incorporation	$O_{TPB}^{2-} + V_0^{"} \leftrightarrow O_0^X$	~0	[1, 3]

Table S1. Elementary ORR processes and their corresponding reaction orders

Figure. S1 XRD patterns of a mixture of the CFO and YSZ powders after heat-treatment a 700 °C for 10 h under ambient air.

Figure. S2 Comparison of O2-TPD profiles of CFO-ESB samples.

Figure. S3 (a) survey spectra, (b) Co $2p_{3/2}$, (c) Fe 2p, and (d) Fe $2p_{3/2}$ core-level XPS spectra of CFO and CFO-ESB samples, respectively. (e) Comparison of O 1s core-level XPS spectra of CFO-ESB mixtures with different ratios.

Figure. S4 Relationship between the ASR values with the weight percentage of ESB for the CFO-ESB electrode.

Figure. S5 Comparison of *I-V-P* curves of CFO and CFO-ESB cells measured at 700 °C under FC mode.

Figure. S6 A cross-sectional SEM image of the CFO-ESB cell after durability test

Figure. S7 Comparison of *I-V* curves of CFO and CFO-ESB cells measured at 700 °C under EC

mode

Figure. S8 Durability of CFO-ESB cell at a constant voltage of 1.3 V at 650 °C with 20% steam concentration under EC mode.

References

[1] Kim D, Park JW, Chae MS, Jeong I, Park JH, Kim KJ, et al. An efficient and robust lanthanum strontium cobalt ferrite catalyst as a bifunctional oxygen electrode for reversible solid oxide cells. Journal of Materials Chemistry A. 2021;9(9):5507-21.

[2] Thaheem I, Kim KJ, Lee JJ, Joh DW, Jeong I, Lee KT. High performance Mn 1.3 Co 1.3 Cu
0.4 O 4 spinel based composite cathodes for intermediate temperature solid oxide fuel cells.
Journal of Materials Chemistry A. 2019;7(34):19696-703.

[3] Yun B-H, Kim KJ, Joh DW, Chae MS, Lee JJ, Kim D-w, et al. Highly active and durable double-doped bismuth oxide-based oxygen electrodes for reversible solid oxide cells at reduced temperatures. Journal of Materials Chemistry A. 2019;7(36):20558-66.