Multifunctional carbon foam with hollow-microspheres and concave-convex microstructure for adjustable electromagnetic wave absorption and wearable applications

Yingying He^a, Peiying Xie^a, Shuai Li^a, Yanan Wang^a, Daogui Liao^a, Hongxia Liu^{*a}, Li Zhou^a, Yunhua Chen^{*b}

^a Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and School of Material Science and Engineering, College of Material Science & Engineering, Guilin University of Technology, Guilin 541004, China

^b School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China

*Corresponding author Tel: +86-773-5896438 Fax: +86-773-5896211 E-mail: hliu28551@gmail.com (Liu); yhchen0723@gmail.com (Chen)

Fig. S1 (a) Digital photo of GO aqueous dispersion, (b) TEM images of GO, CNF and Fe_3O_4 nanoparticles.

Fig. S2. SEM images of CNF/GO/PW-30/Fe₃O₄-1.0 composite foams obtained at water-oil volume ratios of (a_1) 5:1 and (b_1) 7:1 before carbonization and after carbonization (a_{2-3}, b_{2-3}) .

Fig. S3. The corresponding statistical graph of the average diameter of the PW microspheres in the composite foams.

Fig. S4. SEM-mapping pattern of the (a) C-rGO/Fe₃O₄-1.0 carbon foam: (b) C element, (c) Fe element and (d) O element.

Fig. S5. (a) TG and (b) DTG curve of CNF, GO, PW and CNF/GO/PW-30/Fe₃O₄-2.0 composite foam.

Fig. S6. XPS spectrum of Fe2p of C-rGO/Fe₃O₄-2.5 carbon foam.

Fig. S7. Different magnification times SEM photos of C-rGO/Fe₃O₄-2.5 carbon foam after 1000 time cycled compression at 60% strain.

Fig. S8. Stress-strain curves (left) and digital photos (right) of (a) C-rGO/Fe₃O₄-1.0, (b) C-rGO/Fe₃O₄-2.0, and (c) C-rGO/Fe₃O₄-2.5 carbon foams.

Fig. S9. Simulation of absorber thickness versus peak frequency for (a) $C-rGO/Fe_3O_4$ -1.0, (b) $C-rGO/Fe_3O_4$ -2.0, (c) $C-rGO/Fe_3O_4$ -2.5 and (d) $C-rGO/Fe_3O_4$ -3.0 carbon foams.

Fig. S10. Dielectric Cole-Cole semicircles of (a) $C-rGO/Fe_3O_4-1.0$, (b) $C-rGO/Fe_3O_4-2.0$, (c) $C-rGO/Fe_3O_4-2.5$ and (d) $C-rGO/Fe_3O_4-3.0$ carbon foams.

Fig. S11. Frequency dependence of $\mu''(\mu')^{-1}f^{-1}$ values for the carbon foams.

Fig. S12. (a) Dielectric loss tangent and (b) magnetic loss tangent of C-rGO/Fe₃O₄ carbon foams.

Sample		PW	Fe ₃ O ₄
	oil (V/V)	concentraction	concentraction
		(wt%)	(wt%)
CNF/GO/PW-30/Fe ₃ O ₄ -1.0	5:1	30	1.0
CNF/GO/PW-30/Fe ₃ O ₄ -1.0	6:1	30	1.0
CNF/GO/PW-30/Fe ₃ O ₄ -1.0	7:1	30	1.0
CNF/GO/PW-10/Fe ₃ O ₄ -1.0	6:1	10	1.0
CNF/GO/PW-30/Fe ₃ O ₄ -0.5	6:1	30	0.5
CNF/GO/PW-30/Fe ₃ O ₄ -2.0	6:1	30	2.0
CNF/GO/PW-30/Fe ₃ O ₄ -2.5	6:1	30	2.5
CNF/GO/PW-30/Fe ₃ O ₄ -3.0	6:1	30	3.0

Table S1. Experimental recipes of preparing Pickering emulsion gels stabilized by

 CNFs.

^a The density of PW is 0.9 g/cm³.

Absorbers	RL _{min} (dB)	Thickness (mm)	Effective bandwidth (GHz)	Ref.
Ti ₃ C ₂ T _x MXene@GO	-49.10	1.2	2.9	1
CeO _{2-x} /rGO	-50.60	1.5	5.8	2
Nitrogen-doped rGO aerogels	-56.40	2.0	6.8	3
NiAl-layered hydroxide/rGO	-41.50	1.4	4.4	4
Graphene aerogel spheres	-52.70	2.3	7.0	5
C@MoO ₂ /rGO	-35.40	1.5	4.7	6
CoFe ₂ O ₄ /N-rGO	-55.43	2.3	7.2	7
rGO/PANI	-48.00	2.5	6.0	8
N/B-rGO	-52.00	2.8	6.0	9
CoNi@NC/NCNT/N-rGO	-43.48	3.0	4.2	10
FeNi@NC/NCNT/N-rGO	-39.39	2.0	4.4	11
Ni/MXene/RGO aerogel	-75.2	2.1	7.3	12
CN-REOs	-58.24	1.8	4.8	13
rGO/Ni hybrids	-39.03	2.0	4.3	14
Air@Co@Co ₃ Sn ₂ @SnO ₂ /RGO	-55.49	2.1	5.43	15
C-rGO/Fe ₃ O ₄ carbon foam	-57.50	3.0	6.7	This Work

Table S2. Electromagnetic wave absorption properties of carbon-based absorbers in this work and the other previous literatures.

References

- 1. Y. Li, F. B. Meng, Y. Mei, H. G. Wang, Y. F. Guo, Y. Wang, F. X. Peng, F. Huang and Z. W. Zhou, *Chemical Engineering Journal*, 2020, **391**.
- 2. Q. Q. Li, Y. H. Zhao, X. H. Li, L. Wang, X. Li, J. Zhang and R. C. Che, *Small*, 2020, 16.
- 3. R. Shu, G. Zhang, C. Zhang, Y. Wu and J. Zhang, *Advanced Electronic Materials*, 2021, 7.

- 4. X. F. Xu, S. H. Shi, Y. L. Tang, G. Z. Wang, M. F. Zhou, G. Q. Zhao, X. C. Zhou, S. W. Lin and F. B. Meng, *Advanced Science*, 2021, **8**.
- 5. T. Li, D. D. Zhi, Y. Chen, B. Li, Z. W. Zhou and F. B. Meng, *Nano Research*, 2020, **13**, 477-484.
- C. Wu, Z. F. Chen, M. M. Wang, X. Cao, Y. Zhang, P. Song, T. Y. Zhang, X. L. Ye, Y. Yang, W. H. Gu, J. D. Zhou and Y. Z. Huang, *Small*, 2020, 16.
- X. Wang, J. Liao, R. Du, G. Wang, N. Tsidaeva and W. Wang, *Journal of Colloid and Interface Science*, 2021, 590, 186-198.
- 8. L. Zhang, Z. Zhang, Y. Lv, X. Chen, Z. Wu, Y. He and Y. Zou, *Acs Applied Nano Materials*, 2020, **3**, 5978-5986.
- 9. Z. H. Sun, Z. Q. Yan, K. C. Yue, A. R. Li and L. Qian, *Composites Part B-*Engineering, 2020, **196**.
- J. Xu, Y. A. Shi, X. C. Zhang, H. R. Yuan, B. Li, C. L. Zhu, X. T. Zhang and Y. J. Chen, *Journal of Materials Chemistry C*, 2020, 8, 7847-7857.
- 11. J. Xu, X. Zhang, H. R. Yuan, S. Zhang, C. L. Zhu, X. T. Zhang and Y. J. Chen, *Carbon*, 2020, **159**, 357-365.
- 12. L. Y. Liang, Q. M. Li, X. Yan, Y. Z. Feng, Y. M. Wang, H. B. Zhang, X. P. Zhou, C. T. Liu, C. Y. Shen and X. L. Xie, *Acs Nano*, 2021, **15**, 6622-6632.
- 13. S. Gao, G. S. Wang, L. Guo and S. H. Yu, *Small*, 2020, 16, 13.
- 14. W. Xu, G. S. Wang and P. G. Yin, *Carbon*, 2018, **139**, 759-767.
- G. S. Wen, X. C. Zhao, Y. Liu, D. Z. Yan and Z. Z. Hou, *Chem. Eng. J.*, 2021, 420, 9.