Supplementary Information

Bio-skin inspired 3D porous cellulose/AIPO₄ nano-laminated film with structure-enhanced selective emission for all-day non-power cooling

Shuangjiang Feng¹, Yuming Zhou^{1*}, Xi Chen¹, Shengnan Shi¹, Chenghuan Liu¹, Tao Zhang^{2*}

¹School of Chemistry and Chemical Engineering, Southeast University, Nanjing

211100, Jiangsu Province, China

²School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China¹

*Corresponding authors:

Tel./fax: +86 025 52090617.

E-mail: <u>ymzhou@seu.edu.cn</u> (Y, Zhou)

zhangtaochem@163.com (T, Zhang)

Methodology
Models and simulation
Fig.S1. Schematic illustration for the fabrication of hollow AlPO ₄ nanoparticles7
Fig.S2. Selected DMF as high-quality solvent of CA and the ultra-rapid extraction by
inferior solvents and other examples of ultra-rapid polymer precipitation through
solvent extraction inspired by solvents polarity matching
Fig.S3. DFT models for solvents molecules and their interaction energy9
Fig.S4. (a) Macro optical photo of the bio-skin structural 3D PCA/h-AlPO ₄ PRC film
with smooth surface; SEM images (b) smooth surface, (c) wrinkle surface, (d) thickness
of 3D PCA PRC film without dense nano-layer10
Fig.S5. SEM images of (a) (b) h-AlPO ₄ nanoparticles and (c) EDS spectra11
Fig.S6. Mechanical deformation and strength of the 3D PCA based PRC films12
Fig.S7. Reflectance spectra of 3D PCA films with different concentrations of CA13
Fig.S8. Reflectance spectra of PCA based films with different internal structures
including bulk and porous structures14
Fig.S9. Reflectance spectra (a) 3D PCA films with different surface morphology and
deposited with h-AlPO ₄ nanoparticles; (b) 3D PCA/h-AlPO ₄ films deposited with
different masses of nanoparticles15
Fig.S10. Infrared emissivity reflected by infrared thermal imaging of 3D PCA films
with different surface morphology16
Fig.S11. Daytime outdoor PRC capacity of 3D PCA PRC films with different surface

Content

Table S11	9
and deposited with h-AlPO ₄ 1	8
Fig.S12. Nighttime PRC capacity of 3D PCA films with different surface morpholog	şу
morphology under low environment temperature1	7

Methodology

The average hemispherical emissivity ϵ from λ_1 to λ_2 is calculated by:

$$\varepsilon_{(\lambda_1 - \lambda_2)} = \frac{\int_{\lambda_1}^{\lambda_2} eI_{BB}(\lambda) d\lambda}{\int_{\lambda_1}^{\lambda_2} I_{BB}(\lambda) d\lambda} \approx \frac{\sum_{\lambda_1}^{\lambda_2} \varepsilon_n}{n_2 - n_1 + 1}$$
(1)

Where I_{BB} is the radiance of the blackbody, T=298 K.

The average reflectivity in UV-vis-NIR is defined using the following equation:

$$R_{(0.3-2.5)} = \frac{\int_{0.3}^{2.5} R(\lambda)E(\lambda)d\lambda}{\int_{0.3}^{2.5} E(\lambda)d\lambda} R_{(0.3-2.5)} = \frac{\int_{0.3}^{2.5} R(\lambda)E(\lambda)d\lambda}{\int_{0.3}^{2.5} E(\lambda)d\lambda}$$

(2)

Where $R(\lambda)$ is the reflectivity of membrane and $E(\lambda)$ is the solar spectral irradiance profile as the function of wavelength.

Models and simulation

To demonstrate the interaction between different solvents and polymer, we perform the density functional theory (DFT) calculations. The simulation is performed with the density functional theory program DMol³ in Material Studio. The physical wave functions are expanded in terms of numerical basis sets (Dmol³/GGA-PBE/DNP(3.5) basis set). The exchange-correlation energy was calculated with Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). A Fermi smearing of 0.005 Ha (1 Ha = 27.211 eV) and a global orbital cutoff of 5.2 Å are employed. The convergence criteria for the geometric optimization and energy calculation are set as follows: (a) a self-consistent field tolerance of 1.0×10.6 Ha/atom; (b) an energy tolerance of 1.0×10^{-5} Ha/atom.

The solar radiation scattering models could be simulated with Finite difference time domain method (FDTD) and the scattering models included the cavities and inorganic nanoparticles was set as follows:

The images of models represented (a) single cavity; (b) multiple cavities; (c) multisize hybrid cavities.

Fig.S1. Schematic illustration for the fabrication of hollow AlPO₄ nanoparticles.

Fig.S2. Selected DMF as high-quality solvent of CA and the ultra-rapid extraction by inferior solvents and other examples of ultra-rapid polymer precipitation through solvent extraction inspired by solvents polarity matching.

Fig.S3. DFT models for solvents molecules and their interaction energy.

Fig.S4. (a) Macro optical photo of the bio-skin structural 3D PCA/h-AlPO₄ PRC film with smooth surface; SEM images (b) smooth surface, (c) wrinkle surface, (d) thickness of 3D PCA PRC film without dense nano-layer.

Fig.S5. SEM images of (a) (b) $h-AlPO_4$ nanoparticles and (c) EDS spectra.

Fig.S6. Mechanical deformation and strength of the 3D PCA based PRC films.

Fig.S7. Reflectance spectra of 3D PCA films with different concentrations of CA.

Fig.S8. Reflectance spectra of PCA based films with different internal structures including bulk and porous structures.

Fig.S9. Reflectance spectra (a) 3D PCA films with different surface morphology and deposited with h-AlPO₄ nanoparticles; (b) 3D PCA/h-AlPO₄ films deposited with different masses of nanoparticles.

Fig.S10. Infrared emissivity reflected by infrared thermal imaging of 3D PCA films

with different surface morphology.

Fig.S11. Daytime outdoor PRC capacity of 3D PCA PRC films with different surface morphology under low environment temperature.

Fig.S12. Nighttime PRC capacity of 3D PCA films with different surface morphology and deposited with h-AlPO₄.

Materials	R _{solar} (average %)	E _{MIR} (average %)
3D PCA/h-AlPO ₄ -F-Wrinkle	97	94.7
3D PCA/h-AlPO ₄ -F-Smooth	95	88.7
3D PCA/h-AlPO ₄ -B	94	96.6

 Table S1 Average solar radiation reflectivity and emissivity of PCA based PRC films.