Supporting Information

Grain and stoichiometry engineering for ultra-sensitive perovskite X-ray detectors

Yingrui Xiao,^a Shanshan Jia,^a Nuo Bu,^a Nan Li,^a Yucheng Liu,^a Ming Liu,^b Zhou Yang,^{*a} and Shengzhong (Frank) Liu^{*ac}

Detailed procedure for the preparation of the title compound

First, 1 g MAI powder was dissolved in 10 ml IPA at 80 °C \cdot then 2 g of PbI₂ powder was slowly added into 10 ml of MAI solution (100 g/L) in IPA under stirring at 80 °C. After stirring 2 h at this temperature, the solution was centrifuged and washed by IPA three times, and then the precipitate was placed into a drying oven of 60 °C. Finally, black MAPbI₃ perovskite powder was obtained. 1 g MAPbI₃ powder and 6.4 mg MAI powder (the molar ratio of MAI to MAPbI₃ powder is 2.5%) were mixed and fully ground in a mortar. Finally, ground powder was hot-pressed at 250 °C for 1 h as mentioned in pellets preparation.

Figure S1. The X-ray diffraction (XRD) patterns of MAPbI₃ powder, MAI powder and PbI₂ powder (a), XRD patterns of MAPbI₃ pellets obtained at different hot-press temperatures (b) and ground powder from pellets (c).

Figure S2. Grain size statistics of (a) powder; (b) 100-Pellet; (c) 150-Pellet; (d) 200-Pellet; (e) 250-Pellet; (f) hot-pressed at 150 °C for 12 h, (g) heat treatment at 150 °C and (h) heat treatment at 250 °C.

Figure S3. Scanning electron microscopy images of MAPbI₃ pellets: (a) 150-heat pellet; (b) 250-heat pellet; (c) hot pressed for 12 h; (d) 1.25-250 pellet; (e) 2.50-250 pellet; (f) 5.00-250 pellet.

Figure S4. Atomic% of different elements in (a) RT-pellet; (b) 100-pellet; (c) 150-pellet; (d) 200-pellet; (e) 250-pellet; (f) 1.25-250 pellet; (g) 2.50-250 pellet; (h) 5.00-250 pellet.

Figure S5. (a) Photoluminescence (PL) of pellets pressed at temperatures varying from RT to 250 $^{\circ}$ C, and (b) pellets pressed at 250 $^{\circ}$ C with different amounts of excess MAI from 0 to 5%.

Figure S6. Time-resolved photoluminescence of (a) RT-Pellet; (b) 100-Pellet; (c) 150-Pellet; (d) 200-Pellet; (e) 250-Pellet; (f) 1.25-250; (g) 2.50-250; (h) 5.00-250.

Figure S7. Sensitivities of devices based on RT, 1.25-250, 2.50-250, 5.00-250 pellets at biases of 1 V, 2 V and 5 V

Figure S8. Photoconductivity curves of (a) RT, (b) 1.25-250 and (c) 5.00-250 devices.

Sample	Average τ(ns)	τ1 (ns)	Amplitude τ1(%)	τ2 (ns)	Amplitude τ2(%)
RT-Pellet	19.19	28.36	12.97	2.292	87.03
100-Pellet	22.14	29.997	19.46	2.973	80.54
150-Pellet	15.62	34.50	3.77	1.856	96.23
200-Pellet	7.18	15.97	6.00	1.6063	94
250-Pellet	3.07	6.594	7.07	0.766	92.93
1.25-250	4.72	12.184	4.63	1.282	95.37
2.50-250	6.10	8.802	23.38	1.6164	76.62
5.00-250	4.07	8.115	10.64	1.5456	89.36

Table S1. Summaries of fitting parameters for time-resolved photoluminescence(TRPL) for a cross-section of different pellets.

Table S2. Gain factors of different devices at biases of 1 V, 2 V and 5 V.

Device	Gain at 1V	Gain at 2V	Gain at 5V
RT-Pellet	65.28	140.59	348.64
1.25-250	850.40	2135.44	4930.70
2.50-250	1347.48	2913.25	6126.35
5.00-250	955.17	1720.62	3316.88

Device structure	E _{ph} (keV)	E (V mm ⁻ ¹)	μτ (cm ² V ⁻¹)	S (μC Gy _{air} - ¹ cm ⁻²)	LoD (nGy _{air} s ⁻ ¹)	Ref
Ag/ZnO/PCBM/ MAPbI ₃ /PEDOT: PSS/ITO	38	200	2×10-4	2527	-	1
ITO/TFT/PI- MAPbI ₃ /MAPbI ₃ /PI- MAPbBr ₃ /ITO	(100 kV) ^a	60	1×10 ⁻⁴	1.1×10 ⁴	-	2
Au/MAPbI ₃ /PCBM/Au	(40 kV) ^a	12.5	3.8×10 ⁻⁴	1.2×10 ⁵	-	3
FTO/CsPbBr ₃ /Au	30	5	1.3×10 ⁻²	5.6×10 ⁴	215	4
Au/Cs ₂ AgBiBr ₆ /Au	30	500	5.5×10 ⁻³	250	95.3	5
Au/MAPbI ₃ /Au	-(40 kV) a	1.32	5.46×10 ⁻³	9.4×10 ⁴	350	this work

 Table S3. Key parameters of polycrystalline perovskites-based X-ray detectors

^aOnly the acceleration voltage of the X-ray sources rather than its peak photon energy is provided.

References

- Y. C. Kim, K. H. Kim, D.-Y. Son, D.-N. Jeong, J.-Y. Seo, Y. S. Choi, I. T. Han, S. Y. Lee and N.-G. Park, *Nature* 2017, 550, 87.
- [2] L. Yao, G. Niu, L. Yin, X. Du, Y. Lin, X. Den, J. Zhang, and J.Tang, J. Mater. Chem. C 2020,
 8, 1239.
- X. Zheng, W. Zhao, P. Wang, H. Tan, M. I. Saidaminov, S. Tie, L. Chen, Y. Peng, J. Long and
 W.-H. Zhang, J. Energy Chem. 2020, 49, 299.
- [4] W. Pan, B. Yang, G. Niu, K. H. Xue, X. Du, L. Yin, M. Zhang, H. Wu, X. S. Miao and J. Tang, *Adv. Mater.* 2019, **31**, e1904405.
- [5] B. Yang, W. Pan, H. Wu, G. Niu, J. H. Yuan, K. H. Xue, L. Yin, X. Du, X. S. Miao, X. Yang, Q. Xie and J. Tang, *Nat. Commun.* 2019, 10, 1989.