Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supplementary Information: Anharmonic lattice dynamics of superionic lithium nitride

Gabriel Krenzer¹, Chang-Eun Kim², Kasper Tolborg¹, Benjamin J. Morgan³, and Aron Walsh^{1, 4}

¹Imperial College London, SW7 2BX, London, United Kingdom ²Lawrence Livermore National Laboratory, Livermore, CA 94550, United States ³University of Bath, BA2 7AY, Bath, United Kingdom ⁴Yonsei University, Seoul, South Korea

October 11, 2021

Study	a = b (Å)	Relative error (%)	c (Å)	Relative error (%)
Present data (α -Li ₃ N)	3.611	-	3.847	-
Calculated [1]	3.629	0.50	3.855	0.21
Measured [2]	3.648	1.01	3.875	0.72
Measured [3]	3.637	0.72	3.870	0.60
Measured [4]	3.656	1.23	3.868	0.54
Present data (β -Li ₃ N)	3.518	-	6.266	-
Measured [5]	3.552	0.96	6.311	0.71
Measured [3]	3.555	1.04	6.319	0.85

Table S1: Table of reported lattice parameters of Li₃N.

Figure S1: Calculated mean square displacements for α -Li₃N at 300 – 678 K. On a log-log plot the diffusive regime corresponds to the sloping linear portion.

Figure S2: Harmonic lattice dynamics of β -Li₃N. (a) Phonon dispersion and total phonon DOS; (b) PES of the imaginary mode at the K-point; left and right snapshots in (c) and (d) are taken through the *ab* and *bc* planes, respectively.

Figure S3: Bose-Einstein distribution of phonon quasiparticles with respect to frequency at 298 K (blue), and at 678 K (red). The fraction of phonon occupying states below and above $\omega_{av} = 12.04$ THz is also highlighted.

An imaginary mode is observed in the phonon dispersion of β -Li₃N at the K-point and is shown in Figure S2(a). The energy barrier between the two wells of the PES shown in Figure S2(b) is 40.95 meV. It corresponds to a thermal energy of 475.2 K, which is beyond the stability range of the β -phase according to the calculated phase diagram shown in (manuscript) and neutron powder diffraction data [3]. This could mean that β -Li₃N takes $P6_3cm$ symmetry instead of the accepted $P6_3/mmc$ symmetry. The structures corresponding to the $P6_3/mmc$ and $P6_3cm$ phases are shown in Figures S2(c) and S2(d). No diffraction data showing uncertainties on the Li positions could be found. β -Li₃N is usually synthesised at high pressure, which might be the reason why the reported $P6_3cm$ phase was not reported in the literature. It is important to note, however, that the $P6_3/mmc$ phase could also be stabilized by phonon-phonon interactions meaning that the $P6_3cm$ is never stable. The direct conversion between energy barrier and temperature alone is not enough to confirm that the $P6_3cm$ phase really exists over the stability range of β -Li₃N, hence the above discussion should be taken lightly. Further experimental investigations, or temperature-dependent lattice dynamics calculations including phonon-phonon interactions are necessary.

Figure S4: Renormalised phonon dispersion of α -Li₃N computed at 300 K, 400 K, 500 K, 600 K, and 678 K. The breakdown of all the modes can be observed at 678 K.

References

- [1] Zhao, Y., Tian, X., Xue, W. & Gao, T. The structure, dynamical and thermodynamic properties of α -Li₃N: a first-principles study. *Solid state communications* **149**, 2130–2134 (2009).
- [2] Rabenau, A. & Schulz, H. Re-evaluation of the lithium nitride structure. *Journal* of the Less Common Metals **50**, 155–159 (1976).
- [3] Huq, A., Richardson, J. W., Maxey, E. R., Chandra, D. & Chien, W.-M. Structural studies of Li₃N using neutron powder diffraction. *Journal of alloys and compounds* 436, 256–260 (2007).
- [4] Tapia-Ruiz, N. *et al.* Low dimensional nanostructures of fast ion conducting lithium nitride. *Nature communications* **11**, 1–8 (2020).
- [5] Beister, H. J., Haag, S., Kniep, R., Strössner, K. & Syassen, K. Phase transformations of lithium nitride under pressure. *Angewandte Chemie International Edition* in English 27, 1101–1103 (1988).