Electronic Supplementary Information

Engineering structural defects into a covalent organic framework for enhanced photocatalytic activity

Jixian Wang,^a Xin-Xin Tian,^a Lei Yu,^b David J. Young,^{*c} Wen-Bao Wang,^b Hai-Yan Li^a and Hong-Xi Li^{*a}

^{*a*} College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

^b Analysis and Testing Centre, Soochow University, Suzhou 215123, China

^c College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia.

Table of Contents

Experimental section	S3
Fig. S1 TGA curves of TAPT-COF and TAPT-COF-7	S5
Fig. S2 The FT-IR spectra of TAPT, TFP and TAPT-COF	S5
Fig. S3 The FT-IR spectra of TAPT-COF-X	
Fig. S4 The solid-state ¹³ C NMR spectra of TAPT-COF and TAPT-COF-15	S6
Fig. S5 The SEM images of TAPT-COF (a) and TAPT-COF-7 (b)	S6
Fig. S6 The SEM images of TAPT-COF-X (X=3, 5, 10, 15)	S6
Fig. S7 The TEM image of TAPT-COF	S7
Fig. S8 BET plots of TAPT-COF (a), TAPT-COF-7 (b) and TAPT-COF-15 (c). Pore size distributions of TAPT-	
COF, TAPT-COF-7 and TAPT-COF-15 (d).	S7
Fig. S9 UV-vis diffuse reflectance spectra (UV-DRS) of TAPT-COF-X (X = 0. 3, 5, 7, 10, 15)	S7
Fig. S10 Tauc and Mott-Schottky plots of TAPT-COF	S8
Fig. S11 Tauc and Mott-Schottky plots of TAPT-COF-3	S8
Fig. S12 Tauc and Mott-Schottky plots of TAPT-COF-5	S8
Fig. S13 Tauc and Mott-Schottky plots of TAPT-COF-7	S8
Fig. S14 Tauc and Mott-Schottky plots of TAPT-COF-10	S9
Fig. S15 Tauc and Mott-Schottky plots of TAPT-COF-15	
Fig. S16 Apparent quantum efficiencies (AQE) of TAPT-COF and TAPT-COF-7	S9
Fig. S17 Control experiments conducted in the absence of TEOA, Pt co-catalyst or light (a). The photostability of	
TAPT-COF-7 (5 hours is a cycle) (b)	S10
Fig. S18 PXRD patterns of TAPT-COF (a) and TAPT-COF-7 (b) before and after photocatalysis	S10
Fig. S19 SEM images of TAPT-COF (a) and TAPT-COF-7 (b) after photocatalysis	S10
Fig. S20 The FT-IR spectra of TAPT-COF (a) and TAPT-COF-7 (b) after photocatalysis	S10
Fig. S21 The EDS mapping of TAPT-COF-7 before the photocatalytic reaction.	S11
Fig. S22 The EDS mapping of TAPT-COF-7 after the photocatalytic reaction.	S11
Fig. S23 The full XPS spectra of TAPT-COF-7 before the photocatalytic reaction	S12
Fig. S24 The full XPS spectra and high-resolution Pt 4f XPS spectra of TAPT-COF-7 after the photocatalytic	
reaction	
Fig. S25 The HRTEM images of TAPT-COF-7 after the photocatalytic reaction	S12
Fig. S26 Electrochemical impedance spectroscopy spectra of TAPT-COF-X	\$13
Fig. S27 Transient photocurrent curves of TAPT-COF-X	S13
Fig. S28 Standard curve for hydrogen analysis	S13
Fig. S29 GC trace for TAPT-COF-7 at 5h	S14
Table S1 Comparison of photocatalytic HER performance of reported 2D COFs	S14
References	S15

Experimental Section

Synthesis of 1,3,5-tris-(4-aminophenyl) triazine (TAPT): TAPT was synthesized according to a literature procedure with a slight modification. 4-Aminebenzonitile (6.5 mmol) was added into a Schlenk flask, which was evacuated under vacuum and filled with nitrogen. CHCl₃ (5 mL) was then added and the solution cooled in an ice-bath. CF₃SO₃H (1.5 mL) was added and the reaction stirred for 24 h at room temperature. Distilled water was then added and the mixture was neutralized with NaOH solution.^{S1} The pale-yellow product was collected and washed with deionized water several times (Yield: 90%). ¹H NMR (400 MHZ, DMSO-d₆, ppm) δ 8.34 (d, J = 8.3 Hz, 6H), 6.68 (d, J = 8.4 Hz, 6H), 5.92(s, 6H), ¹³C NMR (101 MHz, DMSO-d₆, ppm) δ = 169.6, 153.2, 130.2, 122.4, 112.6.

Apparent Quantum Efficiency (AQE) Measurements: The apparent quantum efficiency (AQE) for hydrogen evolution was measured under the illumination of a 300 W Xe lamp with different bandpass filters of 420 ± 10 nm, 500 ± 10 nm, 520 ± 10 nm, 550 ± 10 nm with intensities of 2.25, 2.97, 2.60 and 3.47 mW cm⁻², respectively. TAPT-COF or TAPT-COF-7 was suspended in an aqueous solution of 45 mL H₂O, 5 mL TEOA and 3wt% Pt. The irradiation area was controlled to be 3.14×3.0^2 cm². The AQE was calculated according to the following Eq:^{S2}

$$\eta_{AQE} = \frac{N_e}{N_p} * 100\%$$

$$= \frac{2 * n * N_A}{\frac{E_{total}}{E_{photon}}} * 100\%$$

$$E_{total} = S * P * t$$

$$E_{photon} = h * \frac{c}{\lambda}$$

$$\eta_{AQE} = \frac{2 * n * N_A * h * c}{S * P * t * \lambda} * 100\%$$

where N_e is the number of generated electrons for H_2 , N_p is the number of incident photons, n is the mol. of H_2 molecules produced over 1 hour, N_A is Avogadro constant (6.022 × 10²³ mol⁻¹), h is Planck's constant (6.626 × 10⁻³⁴ J·s), c is the speed of light (3 ×10⁸ m·s⁻¹), S is the irradiation area (m²), P is the intensity of irradiation light (W·m⁻²), t is the photoreaction time (t = 3600 s) and λ is the wavelength of the monochromatic light (m).

Fig. S1 TGA curves of TAPT-COF and TAPT-COF-7.

Fig. S2 FT-IR spectra of TAPT, TFP and TAPT-COF

Fig. S3 FT-IR spectra of TAPT-COF-X.

Fig. S4 Solid-state ¹³C NMR spectra of TAPT-COF and TAPT-COF-15.

Fig. S5 SEM images of TAPT-COF (a) and TAPT-COF-7 (b).

Fig. S6 SEM images of TAPT-COF-X (X = 3, 5, 10, 15).

Fig. S7 TEM image of TAPT-COF.

Fig. S8 BET plots of TAPT-COF (a), TAPT-COF-7 (b) and TAPT-COF-15 (c). Pore size distributions of TAPT-COF, TAPT-COF-7 and TAPT-COF-15 (d).

Fig. S9 UV-vis diffuse reflectance spectra (UV-DRS) of TAPT-COF-X (X = 0. 3, 5, 7, 10, 15).

Fig. S12 Tauc and Mott-Schottky plots of TAPT-COF-5.

Fig. S13 Tauc and Mott-Schottky plots of TAPT-COF-7.

Fig. S14 Tauc and Mott-Schottky plots of TAPT-COF-10.

Fig. S15 Tauc and Mott-Schottky plots of TAPT-COF-15.

Fig. S16 Apparent quantum efficiencies (AQE) of TAPT-COF and TAPT-COF-7.

Fig. S17 Control experiments conducted in the absence of TEOA, Pt co-catalyst or light (a). The photostability of TAPT-COF-7 (5 hours is a cycle) (b).

Fig. S18 PXRD patterns of TAPT-COF (a) and TAPT-COF-7 (b) before and after photocatalysis.

Fig. S19 SEM images of TAPT-COF (a) and TAPT-COF-7 (b) after photocatalysis.

Fig. S20 FT-IR spectra of TAPT-COF (a) and TAPT-COF-7 (b) after photocatalysis.

Fig. S21 EDS mapping of TAPT-COF-7 before the photocatalytic reaction.

Fig. S22 EDS mapping of TAPT-COF-7 after the photocatalytic reaction.

Fig. S23 Full XPS spectra of TAPT-COF-7 before the photocatalytic reaction.

Fig. S24 Full XPS spectra and high-resolution Pt 4f XPS spectra of TAPT-COF-7 after the photocatalytic reaction.

Fig. S25 HRTEM images of TAPT-COF-7 after the photocatalytic reaction.

Fig. S26 Electrochemical impedance spectroscopy spectra of TAPT-COF-X.

Fig. S27 Transient photocurrent curves of TAPT-COF-X

Fig. S28 Standard curve for hydrogen analysis.

Hydrogen production results								
Compound	R. Time	Height	Area	Area%	Conc. (%)			
	1.264	(1)	7564097	01 2025	01 2025			
П2	1.204	413203	/30408/	91.2023	91.2023			
N_2	2.255	42923	729644	8.7975	8.7975			
Total:		456186	8293731	100.00	100.00			

Fig. S29 GC trace for TAPT-COF-7 at 5h.

Table S1. Comparison of photocatalytic HER performance of reported 2D COFs

Photocatalyst	Linkages	SED	Activity	Ref
			(µmol g ⁻¹ h ⁻¹)	
TFPT-COF	Hydrazone	sodium ascorbate	1970	S4
N3-COF	Azine	TEOA	1703	S5
TP-BDDA COF	Imine	TEOA	324	S6
FS-COF	β-ketoenamine	ascorbic acid	10100	S7
Tapa-COF-(CH ₃) ₂	β-ketoenamine	Sodium ascorbate	8330	S 8
NTU-BDA-THAT	β-ketoenamine	ascorbic acid	1127.1	S9
NH_2 -Mexene (8:4)*	/	ascorbic acid	14288.1	S9
MoS ₂ /TpPa-1-COF*	/	ascorbic acid	5885	S10
TiO ₂ -TpPa-1-COF	/	Sodium ascorbate	11190	S11
NH ₂ -UiO-66/TpPa-1-COF	/	Sodium ascorbate	23410	S12
sp ² C-COF _{ERDN}	sp ² carbon-conjugated	TEOA	2120	S13
TAPT-COF-7	β-ketoenamine	TEOA	33910	This
				Work

* Without Pt nanoparticles as Co-catalyst.

References

- S1 B. C. Patra, S. K. Das, A. Ghosh, A. Raj K, P. Moitra, M. Addicoat, S. Mitra, A. Bhaumik, S. Bhattacharya and A. Pradhan, *J. Mater. Chem. A.*, 2018, **6**, 16655-16663.
- S2 Z. Zhao, Y. Zheng, C. Wang, S. Zhang, J. Song, Y. Li, S. Ma, P. Cheng, Z. Zhang and Y. Chen, ACS Catal., 2021, 11, 2098-2107.
- S3 L. Stegbauer, K. Schwinghammer and B. V. Lotsch, Chem. Sci., 2014, 5, 2789-2793.
- S4 V. S. Vyas, F. Haase, L. Stegbauer, G. Savasci, F. Podjaski, C. Ochsenfeld and B. V. Lotsch, *Nat. Commun.*, 2015, 6, 8508.
- S5 P. Pachfule, A. Acharjya, J. Roeser, T. Langenhahn, M. Schwarze, R. Schomacker, A. Thomas and J. Schmidt, *J. Am. Chem. Soc.*, 2018, **140**, 1423-1427.
- S6 X. Wang, L. Chen, S. Y. Chong, M. A. Little, Y. Wu, W. H. Zhu, R. Clowes, Y. Yan, M. A. Zwijnenburg, R. S. Sprick and A. I. Cooper, *Nat. Chem.*, 2018, 10, 1180-1189.
- S7 J. L. Sheng, H. Dong, X. B. Meng, H. L. Tang, Y. H. Yao, D. Q. Liu, L. L. Bai, F. M. Zhang, J. Z. Wei and X. J. Sun, *ChemCatChem*, 2019, 11, 2313-2319.
- S8 H. Wang, C. Qian, J. Liu, Y. Zeng, D. Wang, W. Zhou, L. Gu, H. Wu, G. Liu and Y. Zhao, J. Am. Chem. Soc., 2020, 142, 4862-4871.
- S9 M.-Y. Gao, C.-C. Li, H.-L. Tang, X.-J. Sun, H. Dong and F.-M. Zhang, J. Mater. Chem. A, 2019, 7, 20193-20200.
- S10 C.-C. Li, M.-Y. Gao, X.-J. Sun, H.-L. Tang, H. Dong and F.-M. Zhang, *Appl. Catal. B Environ.*, 2020, **266**, 118586.
- S11 F. M. Zhang, J. L. Sheng, Z. D. Yang, X. J. Sun, H. L. Tang, M. Lu, H. Dong, F. C. Shen, J. Liu and Y. Q. Lan, Angew. Chem. Int. Ed., 2018, 57, 12106-12110.
- S12 E. Jin, Z. Lan, Q. Jiang, K. Geng, G. Li, X. Wang and D. Jiang, Chem, 2019, 5, 1632-1647.