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Experimental section:

Chemicals. Nickel (Ⅱ) acetate tetrahydrate ((CH3COO)2Ni·4H2O, 99%, Aladdin), cobalt (Ⅱ) acetate 

tetrahydrate ((CH3COO)2Co·4H2O, 99.5%, Macklin), ferrocene (Fe(C5H5)2, 99%, Aladdin), selenium (Se, 

>99.99%, Aladdin), carboxylated multi-walled carbon nanotube (CNT, >95%, Aladdin), potassium hydroxide 

(KOH, 90%, Aladdin), Nafion solution (5%, Sigma-Aldrich), ethanol (C2H6O, >99.8%, Sinopharm Chemical 

Reagent Co., Ltd.). The deionized water used in all experiments was ultrapure water (18.2 MΩ·cm). 

Preparation of Ni0.85Se@CNT. (CH3COO)2Ni·4H2O (10 mg), Se powder (10 mg) and CNT (10 mg) were 

well mixed using the mortar. Afterwards, the homogeneous mixture was placed in a quartz vial and argon gas 

was injected into quartz vial until full filled. The quartz vial was then placed in a domestic microwave oven 

and heated at 700 W for 120 seconds. Subsequently, the quartz vial was cooled naturally to room temperature. 

At last, the obtained black powder was washed twice with deionized water and twice with ethanol, and then 

collected by centrifugation. 

Preparation of Ni0.41Fe0.44Se@CNT. (CH3COO)2Ni·4H2O (5 mg), Fe(C5H5)2 (5 mg), Se powder (10 mg) and 

CNT (10 mg) were well mixed using the mortar. Other steps are exactly the same as Ni0.85Se@CNT.

Preparation of Co0.42Fe0.43Se@CNT. (CH3COO)2Co·4H2O (5 mg), Fe(C5H5)2 (5 mg), Se powder (10 mg) 

and CNT (10 mg) were well mixed using the mortar. Other steps are exactly the same as Ni0.85Se@CNT.

Preparation of Ni0.27Co0.28Fe0.30Se@CNT. (CH3COO)2Ni·4H2O (3 mg), (CH3COO)2Co·4H2O (3 mg), 

Fe(C5H5)2 (3 mg), Se powder (10 mg) and CNT (10 mg) were well mixed using the mortar. Other steps are 

exactly the same as Ni0.85Se@CNT.

Preparation of Ni0.33Co0.32Fe0.35@CNT. (CH3COO)2Ni·4H2O (3 mg), (CH3COO)2Co·4H2O (3 mg), 

Fe(C5H5)2 (3 mg) and CNT (5 mg) were well mixed using the mortar. Other steps are exactly the same as 

Ni0.85Se@CNT.

Preparation of NiCoFeSe@CNT in different NiCoFe:Se proportions. (CH3COO)2Ni·4H2O (3 mg), 

(CH3COO)2Co·4H2O (3 mg), Fe(C5H5)2 (3 mg), CNT (10 mg) and Se powder (10 mg) for NiCoFe:Se = 1:1, 

(CH3COO)2Ni·4H2O (3 mg), (CH3COO)2Co·4H2O (3 mg), Fe(C5H5)2 (3 mg), CNT (10 mg) and Se powder 

(5 mg) for NiCoFe:Se = 2:1 and (CH3COO)2Ni·4H2O (3 mg), (CH3COO)2Co·4H2O (3 mg), Fe(C5H5)2 (3 mg), 

CNT (10 mg) and Se powder (20 mg) for NiCoFe:Se = 1:2. Other steps are exactly the same as Ni0.85Se@CNT.
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Characterization. Powder X-ray diffraction (XRD) patterns were recorded on a X’Pert-Pro MPD 

diffractometer with Cu Kα radiation at 40 KV and 40 mA. Scanning electron microscopy (SEM) images were 

obtained by Hitachi, S-8200. The transmission electron microscope (TEM) and high resolution TEM 

(HRTEM) of the catalyst were tested using FEI Tecnai-G2 F30 at an accelerating voltage of 300 KV. X-ray 

photoelectron spectroscopy (XPS) analysis was performed with an Axis Supra spectrometer using a 

monochromatic Al Kɑ source at 15 mA and 14 kV. Scan analysis with an analysis area of 300 × 700 microns 

and a pass energy of 100 eV. The XPS spectra were calibrated by carbon 1 s spectrum, and its main line was 

set to 284.6 eV. The catalysts after the durability tests were sonicated in ethanol and collected for further 

characterization.

Electrochemical measurements. The electrochemical measurements were carried out on CHI 660 

electrochemical workstation (CH Instruments, Inc., Shanghai) with a typical three-electrode system. The 

reference electrode and counter electrode were Ag/AgCl reference electrode and Pt foil, respectively. The 

working electrode was a glassy carbon electrode (GCE, diameter: 3 mm, area: 0.07065 cm2). The potentials 

were converted to the reversible hydrogen electrode (RHE) according to the Nernst equation: E (RHE) = E 

(Ag/AgCl) + 0.199 V + 0.059 × pH. The catalysts were dispersed in ethanol+5% Nafion mixed solution 

(v:v=100:1) and then sonicated for 1 h to obtain homogeneous catalyst ink with concentration of 5 mg/mL. 

Subsequently, 10 μL of the catalyst ink was dropped onto the surface of the GCE for further electrochemical 

tests. The OER performance and durability test were evaluated in O2-saturated 1.0 M KOH solution. And all 

the measurements were carried out at room temperture. Typical OER polarization curves were obtained 

through a linear sweep voltammetry (LSV) measurements with a scan rate of 5 mV s-1 and corrected for iR 

compensation level of 95%. The overpotential (η) is calculated by subtracting 1.23 V which is the theoretical 

potential for oxygen evolution vs RHE from the iR-corrected E (vs RHE). Electrochemical impedance 

spectroscopy (EIS) were measured at 0.45V vs. Ag/AgCl in the frequency range from 10 kHz to 0.01 Hz in 

O2-saturated 1.0 M KOH solution. The electrochemically active surface area (ECSA) was calculated by 

electrochemical double-layer capacitance (Cdl) method. To derive the Cdl, the following equation was used: 

Cdl = Ic/ν, where Cdl was the double-layer capacitance (mF cm-2) of the electroactive materials, Ic was charging 

current (mA cm-2) and ν was scan rate (mV s-1). The ECSA was calculated from the double layer capacitance 

according to the following equation: , where Cs was the specific capacitance (0.040 mF cm−2), 
𝐸𝐶𝑆𝐴 =

𝐶𝑑𝑙 × 𝑆

𝐶𝑠

S was the geometric surface area of electrode (0.07065 cm2). The number of active sites (n) was calculated by 
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the following formula: . M is the mass loading of catalyst on the electrode, N0 is the constant 
𝑛 =

𝐸𝐶𝑆𝐴 × 𝑀 × 𝑁0

𝑁𝐴

of metal surface concentration (Fe =1.63*1019/m2, Co=1.51*1019/m2, Ni =1.54*1019/ m2) and NA is the 

Avogadro constant. The the turnover frequency (TOF) values were calculated from the following equation: 

. Here, j is the current (A) during linear sweep voltammetry (LSV) with 95% iR-corrected, F is 
𝑇𝑂𝐹 =

𝑗
4 ∗ 𝐹 ∗ 𝑛

the Faraday constant (F=96485.3 C mol-1), n is the number of active sites (mol). The factor 1/4 is due to the 

forming of oxygen as a four-electron process. 
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Supplementary Figures. 

Fig. S1 XRD pattern of CNT. 
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Fig. S2 (a) SEM image and (b) TEM image of CNT. 

Fig. S3 TEM images of Ni0.27Co0.28Fe0.30Se@CNT with different reaction times.
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Fig. S4 OER polarization curves of Ni0.27Co0.28Fe0.30Se@CNT with different reaction times.
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Fig. S5 LSV curves of NiCoFeSe@CNT with different feeding ratios in 1.0 M KOH. 
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Fig. S6 (a) SEM image and (b) TEM image of Ni0.27Co0.28Fe0.30Se@CNT. 
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Fig. S7 XRD pattern of Ni0.85Se@CNT. 

Fig. S8 (a) SEM image and (b) TEM image of Ni0.85Se@CNT. 
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Fig. S9 XRD pattern of Ni0.41Fe0.44Se@CNT. 
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Fig. S10 (a) SEM image and (b) TEM image of Ni0.41Fe0.44Se@CNT. 
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Fig. S11 XRD pattern of Co0.42Fe0.43Se@CNT. 

Fig. S12 (a) SEM image and (b) TEM image of Co0.42Fe0.43Se@CNT. 



9

20 40 60 80

 

 

 Ni0.33Co0.32Fe0.35@CNT

FeNi3 JCPDS No. 38-0419

 

In
te

ns
ity

 (a
.u

.)
2θ (degree)

Fig. S13 XRD pattern of Ni0.33Co0.32Fe0.35@CNT. 

Fig. S14 (a) SEM image and (b) TEM image of Ni0.33Co0.32Fe0.35@CNT. 
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Fig. S15 LSV curves of Ni0.33Co0.32Fe0.35@CNT, Ni0.27Co0.28Fe0.30Se@CNT, the commercial RuO2 and CNT. 
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Fig. S16 Overpotentials of different electrocatalysts at the current density of 10 mA cm-2. 
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Fig. S17 CV curves measured at different scan rates from 20 to 100 mV s-1 for (a) Ni0.85Se@CNT, (b) 

Ni0.41Fe0.44Se@CNT, (c) Co0.42Fe0.43Se@CNT and (d) Ni0.27Co0.28Fe0.30Se@CNT in 1.0 M KOH.
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Fig. S18 Electrochemical surface areas of Ni0.85Se@CNT, Ni0.41Fe0.44Se@CNT, Co0.42Fe0.43Se@CNT and 

Ni0.27Co0.28Fe0.30Se@CNT.
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Fig. S19 The number of active sites in Ni0.85Se@CNT, Ni0.41Fe0.44Se@CNT, Co0.42Fe0.43Se@CNT and 

Ni0.27Co0.28Fe0.30Se@CNT.
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Fig. S20 TOF values of Ni0.85Se@CNT, Ni0.41Fe0.44Se@CNT, Co0.42Fe0.43Se@CNT and 

Ni0.27Co0.28Fe0.30Se@CNT at the overpotential of 500 mV.
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Fig. S21 Photograph of catalyst yield after increasing the amount of reactants. 
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Fig. S22 XPS spectrum of Fe 2p in Ni0.27Co0.28Fe0.30Se@CNT after stability test.
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Tables

Table S1. Different atomic ratios in NiCoFeSe@CNT with different feeding ratios

 determined by XPS results.

Ni (atom %) Co (atom %) Fe (atom %) Se (atom %)

NiCoFe:Se=2:1 14 17 16 53

NiCoFe:Se=1:1 15 15 16 54

NiCoFe:Se=1:2 14 15 15 56

Table S2. Different atomic ratios of different catalysts determined by XPS results.

Ni (atom %) Co (atom %) Fe (atom %) Se (atom %)

Ni0.85Se@CNT 46 － － 54

Ni0.41Fe0.44Se@CNT 22 － 24 54

Co0.42Fe0.43Se@CNT － 23 23 54

Ni0.27Co0.28Fe0.30Se@CNT 15 15 16 54

Ni0.33Co0.32Fe0.35@CNT 33 32 35 －

Table S3. OER performance comparison of recently reported transition metal-based catalysts.

Catalysts Overpotential

(mV @ mA cm-2)

Tafel Slope

(mV dec-1)

ECSA

(cm-2)

TOF

(s-1 @ mV)

Electrolyte Ref.

Ni0.27Co0.28Fe0.30Se@CNT 236 @ 10

291 @ 100

365 @ 500

44.1 423.4 1.53 @ 500 1.0 M KOH This

Work

Ni0.83Fe0.17(OH)2 245 @ 10

300 @ 41

61 37.3 N/A 1.0 M KOH [1]
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NiFe-MOF/G 258 @ 10

340 @ 100

49 26.5 1.80 @ 350 1.0 M KOH [2]

defect-rich porous

monolayer NiFe-LDH

230 @ 10

340 @ 100

47 3.7 N/A 0.1 M KOH [3]

hierarchical 

Ni–Fe LDH nanocages

246 @ 20

272 @ 50

71 5.5 N/A 1.0 M KOH [4]

Fe1Co1-oxide nanosheets 308 @ 10 36.8 24.9 0.022 @ 350 0.1 M KOH [5]

amorphous NiFeMo oxide 280 @ 10 49 0.74 N/A 0.1 M KOH [6]

single-unit-cell thick CoSe2 270 @ 10

470 @ 73

64 0.073 0.21 @ 470 1.0 M KOH [7]

Ag-CoSe2 nanobelts 320 @ 10

350 @ 22.4

56 26.5 N/A 0.1 M KOH [8]

NiFeMn-LDH 289 @ 20

320 @ 100

47 65.1 0.0038 @ 500 1.0 M KOH [9]

Co-C@NiFe LDH 249 @ 10

328 @ 100

57.9 30.8 0.0223 @ 300 1.0 M KOH [10]

Fe-doped CoSe2@N-CNT 330 @ 10 74 144.1 N/A 1.0 M KOH [11]

NiFe-LDH/CNT 250 @ 5 31 N/A 0.56 @ 300 1.0 M KOH [12]

Fe-incorporated a-Co(OH)2 295 @10

350 @ 100

52 91.3 0.027 @ 300 1.0 M KOH [13]

Ni1Fe2 nanofoams 190 @ 10

291 @ 100

70 1.66 0.162 @ 300 1.0 M KOH [14]

Fe–Ni2P@PC/CuxS 330 @ 50

390 @ 100

140 75.2 N/A 1.0 M KOH [15]

amorphous NiFe alloy 242 @ 10 24 0.25 N/A 1.0 M KOH [16]

NiFeP/MXene 286 @ 10 35 19 0.35 @ 300 1.0 M KOH [17]
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