In-situ Construction of Hetero-structured Perovskite Composites with Exsolved Fe and Cu Metallic Nanoparticles as Efficient CO₂ Reduction Electrocatalyst for High Performance Solid Oxide Electrolysis Cells

Xiuan Xi^a, Yun Fan^a, Jiujun Zhang^b, Jing-Li Luo^a, Xian-Zhu Fu^{a*}

^a College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China

^b Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China

^{*} Corresponding author: E-mail: <u>xz.fu@szu.edu.cn</u>

Fig. S1. (a) As-synthesized $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\sigma}$ (SFM) and $Sr_2Fe_{1.25}Cu_{0.25}Mo_{0.5}O_{6-\sigma}$ (SFCuM) powders; (b) magnification of (a); (c) reduced $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\sigma}$ (SFM) and $Sr_2Fe_{1.25}Cu_{0.25}Mo_{0.5}O_{6-\sigma}$ (SFCuM) powders; (d) magnification of (c).

Fig. S2. (a-d) HR-TEM micrographs of the reduced $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\sigma}$ (SFM) particles; (e–i) TEM-EDS elemental mappings of the reduced SFM particles, (j) amount of each element in SFM.

Fig. S3. EIS of LSGM electrolyte-supported symmetrical cells with the configuration SFCuM/LDC/LSGM/LDC/SFCuM under a 1:1 CO–CO₂ atmosphere at different operating temperatures.

Figure S4. Current density of LSGM electrolyte-supported single cells with the configuration SFCuM/LDC/LSGM/LSCF-SDC under pure CO₂ atmosphere at different operating temperatures.

Figure S5. Current density comparison of the LSGM-electrolyte supported single cell with

various cathodes at the operating temperature of 800°C.

Figure S6. Raman spectroscopy of the SFCuM-R cathode before and after long-term

stability testing.

Figure S7. Cross section images of LSGM electrolyte supported single cell with SFCuM-R

as the cathode and LSCF-SDC as the anode after 100h long-term stability testing.

Superficial elements / Atomic %	CO ₃ ²⁻ /C-C	O _{ad} /CO ₃ ²⁻	O_{ad}/O_{latt}
Oxidizing	0.56	3.63	2.40
Reducing	0.58	3.75	4.54

Table S1 Superficial C and O stoichiometry of the $Sr_2Fe_{1.25}Cu_{0.25}Mo_{0.5}O_{6-\delta}$ electrode

based on XPS peak fitting results.

Superficial elements	Ç.,	Fe	Мо	Cu	Ο	С	Sr/(Fe+Mo+Cu)	CO ₃ ²⁻
/Atomic %	51							/Sr
Oxidizing	11.5	2 25	2.81	2 44	47.00	32.07	1.54	0.76
	4	2.23	2.81	2.44	47.99	52.97	1.54	0.70
Reducing	11.0	1 00	1.02	2.02	47 21	25.97	1.02	0.94
	8	1.88	1.82	2.03	47.31	33.87	1.93	0.84

Table S2 Superficial elements stoichiometry of the $Sr_2Fe_{1.25}Cu_{0.25}Mo_{0.5}O_{6-\delta}$ electrode

based on XPS results

Table S3. Current density comparison for CO_2 electrolysis obtained at 1.5 V and 800 °C with diverse cathodes.

Fuel electrodes	Electrolyte	Anode	Feeding gas	Current density	Refs.
$La_{0.6}Sr_{0.4}Fe_{0.8}Ni_{0.2}O_{3-\delta}$	YSZ	LSCF-SDC	CO ₂ –30% CO	0.75	1
$Ce\text{-}La_{0.7}Sr_{0.3}Cr_{0.5}Fe_{0.5}O_{3-\delta}$	YSZ	LSCF	CO ₂ –30% CO	0.9	2
$Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}F_{0.1}$	LSGM	LSGM-SDC	100% CO ₂	1.36	3
NiFe@La _{0.6} Sr _{0.4} Fe _{0.8} Mn _{0.2} O ₃	LSGM	BLC	CO ₂ –1% CO	1.70	4
$CoFe@(Pr_{0.4}Sr_{0.6})_3(Fe_{0.85}Mo_{0.15})_2O_7$	YSZ	LSCF-SDC	CO ₂ –30% CO	1.01	5
$Sr_2Fe_{1.4}Mn_{0.1}Mo_{0.5}O_{6-\delta}$ -SDC	LSGM	LSCF-SDC	100% CO ₂	1.35	6
$Co@La_{1.2}Sr_{0.8}Co_{0.4}Mn_{0.6}O_4$ -GDC	LSGM	LSCF-GDC	CO ₂ –30% CO	0.75	7
$FeNi_3 @Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$	LSGM	LSM-GDC	CO ₂ -5% N ₂	0.90	8
$Sr_2Fe_{1.25}Cu_{0.25}Mo_{0.5}O_{6-\delta}$	LSGM	LSCF-SDC	100% CO ₂	1.60	This
					work This
$Sr_2Fe_{1.25}Cu_{0.25}Mo_{0.5}O_{6-\delta}\text{-}R$	LSGM	LSCF-SDC	100% CO ₂	2.5	work

- 1. S. Liu, Q. Liu and J.-L. Luo, J. Mater. Chem. A, 2017, 5, 2673-2680.
- 2. Y.-Q. Zhang, J.-H. Li, Y.-F. Sun, B. Hua and J.-L. Luo, *ACS Appl. Mater. Interfaces*, 2016, **8**, 6457-6463.
- 3. Y. Li, Y. Li, Y. Wan, Y. Xie, J. Zhu, H. Pan, X. Zheng and C. Xia, *Adv. Energy Mater.*, 2019, **9**, 1803156.
- 4. S. Wang, H. Tsuruta, M. Asanuma and T. Ishihara, *Adv. Energy Mater.*, 2015, 5, 1401003.
- 5. S. Liu, Q. Liu and J.-L. Luo, J. Mater. Chem. A, 2016, 4, 17521-17528.
- 6. Y. Jiang, Y. Yang, C. Xia and H. J. M. Bouwmeester, J. Mater. Chem. A, 2019, 7, 22939-22949.
- 7. S. Park, Y. Kim, H. Han, Y. S. Chung, W. Yoon, J. Choi and W. B. Kim, *Appl. Catal. B: Environ.*, 2019, **248**, 147-156.
- H. Lv, L. Lin, X. Zhang, D. Gao, Y. Song, Y. Zhou, Q. Liu, G. Wang and X. Bao, J. Mater. Chem. A, 2019, 7, 11967–11975.