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Supplementary Information includes:

S1: Preparation of PDMS elastomer 

Briefly, a specific amount of PDMS mixture, with the weight composition of PDMS and the curing 

agent being 10:1, was spread onto the silicon wafer. Afterwards, the mixture was placed in an oven at 

60 oC for 3 h to allow simultaneous curing and moulding. The as-obtained PDMS elastomer was peeled 

off and used as a substrate for the casting process.

Fig. S1 Preparation schematic diagram of PDMS elastomer.
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S2: Calculation of surface energy

Surface energies of pristine and 17−FAS, CF4 modified membrane substrates were estimated using 

the LW/AB method (Eq.1) based on independent contact angles with three different liquids [1]. The 

contact angles were measured by a contact angle goniometer (Maist Drop Meter A-100P) via the 

sessile drop method, as shown in section 2.4 in the main texts.
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Table S1 Contact angles of three membranes

MP-PVDF FAS-MP-PVDF CF4-MP-OVDF

Water/o 155.3±1.7 164.1±3.9 166.2±1.5

Diiodomethane 63.5±4.0 156.3±7.8 155.0±4.1

glycerol 144.4±5.0 156.0±3.8 151.7±5.5

 

Table S2 Surface free energy parameters of test liquids  )𝛾/(𝑚𝐽.𝑚 ‒ 2

𝛾𝐿 𝛾𝐿𝑊
𝐿 𝛾 +

𝐿 𝛾 ‒
𝐿

water 72.8 21.8 25.5 25.5

Diiodomethane 50.8 50.8 0 0

glycerol 64.0 34.0 3.92 57.4

The surface energy parameters of the solid can be obtained by measuring the contact angle between 

the solid surface and the three liquids with known 、 、  values.𝛾𝐿𝑊
𝐿 𝛾 +

𝐿 𝛾 ‒
𝐿
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Table S3 Surface energies of three membranes determined by the LW/AB method

MP-PVDF FAS-MP-PVDF CF4-MP-PVDF

Surface energy/mJ.m - 2 33.72±3.10 0.16±0.15 0.46±0.25
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S3: Results of measurements and calculation process for slip length

The slip length of the membrane was determined by torque measurement using a rheometer (AR-

2000ex). A thermostatic controlled Peltier plate (base plate) was maintained at a constant temperature 

of 25±0.2 oC. The membrane samples were carefully fixed to the base plate via tape, a stainless-steel 

cone plate with a diameter of 50 mm and cone angle of 1 o was used to measure liquid viscosity on 

membranes, whose shear rate range was set at 30-100 (s-1). The equipment was pre-calibrated using 

deionised water: deionised water and 20 wt.% glycerin solutions were chosen as the test liquids.

Fig.S2 (A) Schematic drawing of a cone-and-plate rheometer. (B) Schematic of non-slip and slip 

boundary conditions. 

 

Fig. S3 Torque of MP-PVDF, FAS-MP-PVDF, CF4-MP-PVDF membranes corresponding to shear 

rates varying from 30 1/s to 100 1/s. (A) corresponds to deionised water as the test liquid, and (B) 

corresponds to 20 wt.% glycerin.

Slip length of three membranes was determined with eq.2 [2]:
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(2)
M =

R

∫
0

2πr2τθ∅dr =
2π
3

μΩR3

θ0
(1 -

3δ
2Rθ0

+
3δ2

R2θ2
0

)

Where M is the torque,  is the viscosity of the test liquid, Ω is the angular velocity, R is the radius 𝜇

of the cone plate,  is the cone Angle,  is the shear stress in the direction of ∅, and  is the slip 𝜃0 𝜏𝜃∅ 𝛿

length. The calculated slip lengths are shown in Fig.7 of the main text.
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S4: Surface roughness of the membranes.

Fig. S4 The effects of CF4 Plasma or fluorosilane treatment on surface morphology. (A) The root 

means square roughness (RMS) and (B) The Peak-to-valley roughness (Rt) of MP-PVDF, FAS-MP-

PVDF, CF4-MP-PVDF. Roughness values were obtained from a scan size of 3 µm x 3 µm on the top 

surface of micropillars. * indicates p<0.05 and thus there is a significant difference.  
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S5: Physical significance of parameter in the wetting state factor calculation formula

The wetting state of the surface with pillar structure was identified using the wetting state factor ζ 

[3], defined as:

 (3)
𝜁 =

( 2𝑆𝑓 ‒ 1)

2𝑎𝑟
𝑡𝑎𝑛⁡(𝜃𝑎 ‒ 𝜑)

Where  indicates the spacing factor (ratio of pitch to diameter), is aspect ratio given by height 𝑆𝑓 𝑎𝑟 

and diameter of pillar on the membrane,  is advancing angle and 𝜑 is the interior angle as a 𝜃𝑎

geometrical factor (𝜑=90° for cylindrical pillars).

Fig. S5 Physical significance of parameters involved in the calculation of the wetting state factor. 

spacing factor  , aspect ratio , P=10 µm, D=5 µm, H=10 µm.𝑆𝑓 = 𝑃/𝐷  𝑎𝑟 = 𝐻/𝐷 
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S6: The curve of actual flux for three membranes

Fig. S6 The actual flux as a function of concentration factor. The initial flux of MP-PVDF, FAS-MP-

PVDF and CF4-MP-PVDF was 31.2 kg/m2·h, 21.6 kg/m2·h, 32.1 kg/m2·h, respectively.
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