Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information (ESI)

Understanding the role of axial O in CO2 electroreduction on NiN4 single-atom catalysts via

simulations in realistic electrochemical environment

Xu Hu,^a Sai Yao,^a Letian Chen,^a Xu Zhang,^{*b} Menggai Jiao,^b Zhengyu Lu^a and Zhen Zhou^{*a,b}

^a School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, P. R. China

^b Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

Corresponding Author

*Xu Zhang: zhangxu@nankai.edu.cn

*Zhen Zhou: <u>zhenzhou@zzu.edu.cn</u>

Figure S1. MD energy (a) and temperature (b) profiles for NiN₄-O/C and NiN₄/C during 10 ps AIMD simulations.

Figure S2. Illustrations of CV setting in the "slow-growth" method for the reaction of (a) hydrogen adsorption and (b) electrochemical desorption in HER.

Figure S3. Charge density difference (0.0005 e Å⁻³) for NiN₄/C (a) and NiN₄-O/C (b). The yellow and cyan areas indicate electron accumulation and depletion, respectively. The calculated charge density difference figures are given by subtracting the charge density of the whole explicit model from that of the corresponding isolated NiN₄/C and pure water bulk. $\Delta \rho = \rho_{NiN4/C-water \ bulk} - (\rho_{NiN4/C} + \rho_{water \ bulk})$ where $\rho_{(NiN4/C-water \ bulk)}$ is the charge density of the whole system, $\rho_{(NiN4/C)}$ is the charge density of NiN₄/C catalyst slab without water molecules, and $\rho_{(water \ bulk)}$ is the charge density of the pure water bulk. The NiN₄-O/C system is also calculated as the above.

Figure S4. Optimized reaction intermediates during CO_2RR catalyzed by NiN₄-O/C (a, b, c) and NiN₄/C (d, e, f). C, grey; N, blue; Ni, light blue; O, red; H, white.

Figure S5. DFT-based free energies profiles for the NiN₄-O/C (a) and NiN₄/C (b) with vacuum and implicit models during CO₂RR (pH = 0). The implicit solvent model in this study is modelled as a continuum dielectric as implemented by the Hennig group in the VASPsol code.^{1,2}

Table S1. DFT energies (denoted as E(DFT)) and free energy correction values (Δ G) of H₂(g), CO₂(g), and CO(g) are calculated at 1 bar, while the free energy of H₂O(l) is calculated at 0.035 bar. Besides, a correction of -0.41 eV to the DFT energy of CO molecule has been employed since there is an error in describing the energy of CO molecule by using PBE functional.³ The free energy correction is done by the VASPKIT code.⁴

	pressure/bar	temperature/K	E(DFT)/eV	$\Delta G/eV$	G/eV
CO(g)	1	298.15	-14.8	-0.39	-15.576
$CO_2(g)$	1	298.15	-23.0	-0.26	-23.212
$H_2(g)$	1	298.15	-6.8	-0.04	-6.814
H ₂ O(l)	0.035	298.15	-14.2	0	-14.221

NiN ₄ -O/C									
Vacuum model	E(DFT)/eV	$\Delta G/eV$	G/eV		G(total)/eV	U=0 V vs. SHE	U=-0.9 V vs. SHE		
slab	-539.24	0.00	-539.24	$+CO_2+H_2$	-569.27	0.00	0.00		
*CO ₂	-562.40	0.16	-562.23	$+H_2$	-569.05	0.22	0.22		
*COOH	-564.70	0.51	-564.19	$+1/2H_{2}$	-567.59	1.68	0.78		
*CO	-553.99	0.05	-553.95	$+H_2O$	-568.17	1.10	-0.70		
slab	-539.24	0.00	-539.24	+CO+H ₂ O	-569.04	0.23	-1.57		
Implicit model	E(DFT)/eV	$\Delta G/eV$	G/eV		G(total)/eV	U=0 V vs. SHE	U=-0.9 V vs. SHE		
slab	-539.46	0.00	-539.46	$+CO_2+H_2$	-569.49	0.00	0.00		
*CO ₂	-562.64	0.16	-562.48	$+H_2$	-569.29	0.20	0.20		
*COOH	-565.13	0.50	-564.63	$+1/2H_{2}$	-568.04	1.45	0.55		
*CO	-554.23	0.07	-554.17	$+H_2O$	-568.39	1.10	-0.70		
slab	-539.46	0.00	-539.46	+CO+H ₂ O	-569.26	0.23	-1.57		
			Ν	JiN ₄ /C					
Vacuum model	E(DFT)/eV	∆ G/eV	M G/eV	JiN4/C	G(total)/eV	U=0 V vs. SHE	U=-0.9 V vs. SHE		
Vacuum model slab	E(DFT)/eV -535.98	∆ G/eV 0.00	M G/eV -535.98	JiN4/C +CO2+H2	G(total)/eV -566.01	U=0 V vs. SHE 0.00	U=-0.9 V vs. SHE 0.00		
Vacuum model slab *CO ₂	E(DFT)/eV -535.98 -558.97	∆ G/eV 0.00 0.24	M G/eV -535.98 -558.73	JiN4/C +CO2+H2 +H2	G(total)/eV -566.01 -565.55	U=0 V vs. SHE 0.00 0.46	U=-0.9 V vs. SHE 0.00 0.46		
Vacuum model slab *CO ₂ *COOH	E(DFT)/eV -535.98 -558.97 -561.16	∆ G/eV 0.00 0.24 0.50	M G/eV -535.98 -558.73 -560.66	JiN4/C +CO2+H2 +H2 +1/2H2	G(total)/eV -566.01 -565.55 -564.06	U=0 V vs. SHE 0.00 0.46 1.95	U=-0.9 V vs. SHE 0.00 0.46 1.05		
Vacuum model slab *CO ₂ *COOH *CO	E(DFT)/eV -535.98 -558.97 -561.16 -550.78	∆ G/eV 0.00 0.24 0.50 0.01	M G/eV -535.98 -558.73 -560.66 -550.76	ViN4/C +CO2+H2 +H2 +1/2H2 +H2O	G(total)/eV -566.01 -565.55 -564.06 -564.99	U=0 V vs. SHE 0.00 0.46 1.95 1.02	U=-0.9 V vs. SHE 0.00 0.46 1.05 -0.78		
Vacuum model slab *CO ₂ *COOH *CO slab	E(DFT)/eV -535.98 -558.97 -561.16 -550.78 -535.98	∆ G/eV 0.00 0.24 0.50 0.01 0.00	M G/eV -535.98 -558.73 -560.66 -550.76 -535.98	ViN4/C +CO2+H2 +H2 +1/2H2 +H2O +CO+H2O	G(total)/eV -566.01 -565.55 -564.06 -564.99 -565.78	U=0 V vs. SHE 0.00 0.46 1.95 1.02 0.23	U=-0.9 V vs. SHE 0.00 0.46 1.05 -0.78 -1.57		
Vacuum model slab *CO2 *COOH *CO slab Implicit model	E(DFT)/eV -535.98 -558.97 -561.16 -550.78 -535.98 E(DFT)/eV	∆ G/eV 0.00 0.24 0.50 0.01 0.00 ∆ G/eV	N G/eV -535.98 -558.73 -560.66 -550.76 -535.98 G/eV	JiN4/C +CO2+H2 +H2 +1/2H2 +H2O +CO+H2O	G(total)/eV -566.01 -565.55 -564.06 -564.99 -565.78 G(total)/eV	U=0 V vs. SHE 0.00 0.46 1.95 1.02 0.23 U=0 V vs. SHE	U=-0.9 V vs. SHE 0.00 0.46 1.05 -0.78 -1.57 U=-0.9 V vs. SHE		
Vacuum model slab *CO2 *COOH *CO slab Implicit model slab	E(DFT)/eV -535.98 -558.97 -561.16 -550.78 -535.98 E(DFT)/eV -535.87	∆ G/eV 0.00 0.24 0.50 0.01 0.00 ∆ G/eV 0.00	N G/eV -535.98 -558.73 -560.66 -550.76 -535.98 G/eV -535.87	ViN4/C +CO2+H2 +H2 +1/2H2 +H2O +CO+H2O +CO2+H2	G(total)/eV -566.01 -565.55 -564.06 -564.99 -565.78 G(total)/eV -565.90	U=0 V vs. SHE 0.00 0.46 1.95 1.02 0.23 U=0 V vs. SHE 0.00	U=-0.9 V vs. SHE 0.00 0.46 1.05 -0.78 -1.57 U=-0.9 V vs. SHE 0.00		
Vacuum model slab *CO2 *COOH *CO slab Implicit model slab *CO2	E(DFT)/eV -535.98 -558.97 -561.16 -550.78 -535.98 E(DFT)/eV -535.87 -558.95	Δ G/eV 0.00 0.24 0.50 0.01 0.00 Δ G/eV 0.00 0.21	N G/eV -535.98 -558.73 -560.66 -550.76 -535.98 G/eV -535.87 -558.74	ViN4/C +CO2+H2 +H2 +1/2H2 +H2O +CO+H2O +CO2+H2 +H2	G(total)/eV -566.01 -565.55 -564.06 -564.99 -565.78 G(total)/eV -565.90 -565.55	U=0 V vs. SHE 0.00 0.46 1.95 1.02 0.23 U=0 V vs. SHE 0.00 0.35	U=-0.9 V vs. SHE 0.00 0.46 1.05 -0.78 -1.57 U=-0.9 V vs. SHE 0.00 0.35		
Vacuum model slab *CO2 *COOH *CO slab Implicit model slab *CO2 *COOH	E(DFT)/eV -535.98 -558.97 -561.16 -550.78 -535.98 E(DFT)/eV -535.87 -558.95 -561.29	Δ G/eV 0.00 0.24 0.50 0.01 0.00 Δ G/eV 0.00 0.21 0.50	N G/eV -535.98 -558.73 -560.66 -550.76 -535.98 G/eV -535.87 -558.74 -558.74	ViN4/C +CO2+H2 +H2 +1/2H2 +H2O +CO+H2O +CO2+H2 +H2 +H2 +H2 +1/2H2	G(total)/eV -566.01 -565.55 -564.06 -564.99 -565.78 G(total)/eV -565.90 -565.55 -564.19	U=0 V vs. SHE 0.00 0.46 1.95 1.02 0.23 U=0 V vs. SHE 0.00 0.35 1.71	U=-0.9 V vs. SHE 0.00 0.46 1.05 -0.78 -1.57 U=-0.9 V vs. SHE 0.00 0.35 0.81		
Vacuum model slab *CO2 *COOH *CO slab Implicit model slab *CO2 *COOH *CO	E(DFT)/eV -535.98 -558.97 -561.16 -550.78 -535.98 E(DFT)/eV -535.87 -558.95 -561.29 -550.68	∆ G/eV 0.00 0.24 0.50 0.01 0.00 ∆ G/eV 0.00 0.21 0.50 0.01	N G/eV -535.98 -558.73 -560.66 -550.76 -535.98 G/eV -535.87 -558.74 -560.79 -550.67	$\frac{1}{\sqrt{12}}$ $\frac{+CO_{2}+H_{2}}{+H_{2}}$ $+H_{2}O$ $+CO_{2}+H_{2}O$ $+CO_{2}+H_{2}$ $+H_{2}$ $+H_{2}$ $+H_{2}$ $+H_{2}O$	G(total)/eV -566.01 -565.55 -564.06 -564.99 -565.78 G(total)/eV -565.90 -565.55 -564.19 -564.89	U=0 V vs. SHE 0.00 0.46 1.95 1.02 0.23 U=0 V vs. SHE 0.00 0.35 1.71 1.01	U=-0.9 V vs. SHE 0.00 0.46 1.05 -0.78 -1.57 U=-0.9 V vs. SHE 0.00 0.35 0.81 -0.79		

Table S2. Calculated DFT energies (denoted as E(DFT)) and free energy correction values (ΔG) of the pure slab, slab with *CO₂ (*CO₂), slab with *COOH (*COOH), and slab with *CO (*CO) in the vacuum and implicit model of NiN₄-O/C and NiN₄/C.

	q_{is}	q_{ts}	q_{fs}	Φ_{is}	Φ_{ts}	$\Phi_{ m fs}$
NiN ₄ -O/C						
$CO_2 \rightarrow *CO_2$	0.78	0.56	-0.16	4.21	4.31	4.59
*CO ₂ →*COOH	-0.15	-0.34	-0.42	4.54	4.65	4.78
*COOH→CO(aq)	-0.31	-0.90	-0.97	4.78	5.26	5.55
NiN ₄ /C						
$CO_2 \rightarrow *CO_2$	0.74	0.34	0.06	3.54	3.72	3.67
*CO ₂ →*COOH	0.39	-0.09	-0.18	3.57	3.75	3.87
*COOH→CO(aq)	-0.30	-0.87	-1.00	4.04	5.04	5.53
NiN ₄ -O/C						
$+H_2O+e^++H^+ \rightarrow +H_2O$	0.79	0.25	-0.22	4.27	4.63	4.62
$^{*}H+H_{2}O+H^{+}\rightarrow H_{2}+H_{2}O+^{*}$	-0.23	-0.86	-0.97	4.69	5.64	5.26

Table S3. Calculated work functions and Bader charge for the initial, transition, and final states for each elementary step during CO₂RR and HER. All E and Φ are listed in eV, q in the atomic unit, |e|. Is, ts and fs are the initial, transition, and final states.

	$\Delta q(is)$	$\Delta \Phi(is)$	$\Delta q(is \rightarrow f_{c})$	$\Delta \Phi(\text{is})$	ΔE_{corr} (is	$\Delta E_{corr}(is \rightarrow f_{c})$	$\Delta E(is \rightarrow t_{c})$	$\Delta E(is \rightarrow f_{c})$	ΔE^* (is	ΔE^* (is
	- (8)	- (8)	-18)	-18)	- (5)		- (8)	-18)	-18)	- 18)
NiN ₄ -O/C										
$CO_2 \rightarrow *CO_2$	-0.22	0.10	-0.94	0.38	-0.01	-0.18	0.30	0.03	0.29	-0.15
*CO₂→ *COOH	-0.19	0.11	-0.28	0.24	-0.01	-0.03	0.35	0.31	0.34	0.28
*COOH→ CO(aq)	-0.59	0.48	-0.67	0.77	-0.14	-0.26	1.26	1.05	1.12	0.80
NiN ₄ /C										
$CO_2 \rightarrow *CO_2$	-0.40	0.18	-0.68	0.13	-0.04	-0.04	0.25	0.21	0.21	0.17
*CO₂→ *COOH	-0.47	0.18	-0.56	0.30	-0.04	-0.09	0.27	0.24	0.23	0.16
*COOH→ CO(aq)	-0.58	1.00	-0.70	1.50	-0.29	-0.52	0.93	0.58	0.64	0.06
NiN ₄ -O/C										
$^{*}+H_{2}O+e^{-}$ $+H^{+}\rightarrow$ $^{*}H+H_{2}O$	-0.54	0.36	-1.01	0.35	-0.10	-0.17	1.36	1.13	1.26	0.96
$H+H_2O+H^+$ \rightarrow H_2+H_2O+*	-0.63	0.95	-0.74	0.57	-0.30	-0.21	0.95	0.72	0.65	0.51

Table S4. Calculated work functions and Bader charge changes for the initial, transition, and final states during each elementary step. ΔE and ΔE^* are the free energy change under constant charge condition and constant electrode potential condition, respectively. ΔE_{corr} is the constant potential correction energy according to the method proposed by Chan and Nørskov.⁵ All E and Φ are listed in eV, q in the atomic unit, |e|.

$CO_2 \rightarrow *CO_2$	Δq(is→ts)	∆q(is→fs)	$\Delta E^*(is \rightarrow ts)$	$\frac{\Delta E^*(is \rightarrow fs)}{fs}$	U vs. SHE
NiN ₄ -O/C	-0.22	-0.94	0.14	-0.78	-0.9
NiN4/C	-0.40	-0.68	0.21	0.17	-0.9
*CO ₂ →*COOH					
NiN ₄ -O/C	-0.15	-0.28	0.19	0.00	-0.9
NiN ₄ /C	-0.47	-0.56	0.22	0.14	-0.9
*COOH→CO(aq)					
NiN ₄ -O/C	-0.59	-0.63	0.39	-0.03	-0.9
NiN ₄ /C	-0.58	-0.70	0.35	-0.29	-0.9
HER process					
Volmer step	-0.54	-1.01	0.86	0.22	-0.9
Heyrovsky step	-0.63	-0.74	-0.07	-0.34	-0.9

Table S5. Extrapolated reaction energies and dynamic barriers for each elementary step within CO_2RR and HER under -0.9 V vs. SHE based on the method proposed by Chan and Nørskov.⁶

References:

- 1. K. Mathew, V. S. C. Kolluru, S. Mula, S. N. Steinmann and R. G. Hennig, J. Chem. Phys., 2019, 151, 234101.
- K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias and R. G. Hennig, J. Chem. Phys., 2014, 140, 084106.
- 3. A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, *Energy Environ. Sci.*, 2010, **3**, 1311-1315.
- 4. V. Wang, N. Xu, J.-C. Liu, G. Tang and W.-T. Geng, Comput. Phys. Commun. 2021, 267, 108033.
- 5. K. Chan and J. K. Nørskov, J. Phys. Chem. Lett., 2015, 6, 2663-2668.
- 6. K. Chan and J. K. Nørskov, J. Phys. Chem. Lett., 2016, 7, 1686-1690.