Low resistant and stable lithium-garnet electrolyte interface enabled by a multifunctional anode additive for solid-state lithium batteries

Chencheng Cao,^a Yijun Zhong,^a Kimal Chandula Wasalathilake,^a Moses O. Tadé,^a Xiaomin Xu,^a Hesamoddin Rabiee,^{c,d} Md Roknuzzaman,^e Rajib Rahman,^e Zongping Shao^{*a,b}

^a WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6102, Australia. Email: zongping.shao@curtin.edu.au

^b State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.

^c Centre for Future Materials, University of Southern Queensland, Springfield Central, QLD
4300, Australia.

^d Australia Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, Queensland 4072, Australia.

^e School of Physics, University of New South Wales, Sydney, NSW 2052, Australia.

Supplementary Information

Fig. S1 SEM of LLZTO pellet sintering at 1150 °C.

Fig. S2 XRD pattern of the LLZTO pellet.

Fig. S3 A digital photo of molten Li on the garnet pellet.

Fig. S4 A digital photo of Li-LLTO on the garnet pellet.

Fig. S5 CV curve of the full cell LiFePO₄ | LLZTO| Li-LLTO.

Fig. S6 Cycling performance of LiFePO₄| LLZTO| Li full cell at 1 C.

Fig. S7 SEM of Li-LLTO LLZTO interface after the full cell cycling.

Fig. S8 SEM-EDX mapping of the Li-LLTO and LLZTO interface after cycling.