Supporting Information

Exploring the influence of the cation type and polymer support in bis(fluorosulfonyl)imide-based plastic crystal composite membranes for CO_2/N_2 separation

Fernando Ramos,^a Yady Garcia,^a Colin Kang,^a Luke O'Dell,^a Maria Forsyth,^a and Jennifer M. Pringle*^a

Thermal analysis

Table S1. Thermal data of the neat polymers (PVDF and PEO) and the neat OIPCs ($[C_2mpyr][FSI]$, $[P_{1222}][FSI]$, [HMG][FSI], $[N_{1111}][FSI]$, $[N_{111CN}][FSI]$), plus their co-cast composites at different ratios of study (80:20 and 50:50).

	phase III-II		phase II-I		Polymer or combined OIPC/polymer melting		OIPC melting	
	T [°C] ±1°C	ΔH [J g ⁻¹] ±10%	T [°C] ±1°C	ΔH [J g ⁻¹] ±10%	T [°C] ±1°C	∆H [J g ⁻¹] ±10%	T [°C] ±1°C	ΔΗ [J g ⁻¹] ±10%
PVDF	-	-	-	-	160	33.9	-	-
PEO	-	-	-	-	70	126.6	-	-
[C ₂ mpyr][FSI]	-66	33.0	-15	3.7	-	-	203	25.3
80[C ₂ mpyr][FSI]-20PVDF	-66	25.1	-16	1.9	140	10.1	198	7.1
50[C ₂ mpyr][FSI]-50PVDF	-66	14.3	-15	0.9	143	26.2	-	-
80[C ₂ mpyr][FSI]-20PEO	-61	24.0	-14	1.8	62	24.6	203	8.4
50[C ₂ mpyr][FSI]-50PEO	-64	6.0	-14	0.6	62	72.6	-	-
[P ₁₂₂₂][FSI]	-	-	-52	29.4	-	-	47	23.4
80[P ₁₂₂₂][FSI]-20PVDF	-	-	-55	6.6	122	12.0	47	12.0
50[P ₁₂₂₂][FSI]-50PVDF	-	-	-53	1.2	142	28.8	48	1.8
80[P1222][FSI]-20PEO	-	-	-51	20.4	53	42.0	-	-
50[P ₁₂₂₂][FSI]-50PEO	-	-	-52	1.2	61	67.2	-	-
[HMG][FSI]	10	31.2	67	37.8	-	-	88	6.6
80[HMG][FSI]-20PVDF	10	0.6	68	22.2	115	9.0	85	2.4
50[HMG][FSI]-50PVDF	11	1.2	68	9	132	25.2	86	0.6
80[HMG][FSI]-20PEO	-	-	-	-	62	62.4	-	-
50[HMG][FSI]-50PEO	-	-	-	-	70	101.4	-	-
[N ₁₁₁₁][FSI]	-	-	76	51.6	-	-	311	39.0
80[N ₁₁₁₁][FSI]-20PVDF	-	-	77	43.2	158	13.8	n/a	n/a
50[N ₁₁₁₁][FSI]-50PVDF	-	-	77	21.0	160	36.6	n/a	n/a
80[N ₁₁₁₁][FSI]-20PEO	-	-	78	43.2	61	32.4	n/a	n/a
50[N ₁₁₁₁][FSI]-50PEO	-	-	77	19.2	64	71.4	n/a	n/a
[N _{111CN}][FSI]	-	-	-66	4.2	-	-	100	74.4
80[N _{111CN}][FSI]-20PVDF	-	-	-65	3.0	165	12.0	103	49.8
50[N _{111CN}][FSI]-50PVDF	-	-	-	-	167	40.8	96	24.6
80[N _{111CN}][FSI]-20PEO	-	-	-65	3.0	53	26.6	101	43.2
50[N _{111CN}][FSI]-50PEO	-	-	-66	1.8	51	66.6	82.4	9.0

Polarised optical microscopy

Figure S1: Polarized optical micrographs taken at 200x magnification at room temperature after melt and recrystallization on a microscope slide in a hot stage (cooling rate 10 °C min⁻¹) of a) neat [HMG][FSI], and b) neat [P₁₂₂₂][FSI].

Gas permeability-selectivity

Table S2. CO₂ and N₂ permeability and selectivity of the neat polymers and the OIPC/polymer composites at 35 and 75 °C.

OIPC	Polymer (wt%)	<i>T</i> (K)	P _{CO2}	P _{N2}	α _{CO2/N2}
-		308	0.7 ± 0.3	0.02 ± 0.003	31 ± 15.8
		348	3 ± 0.1	0.4 ± 0.08	7 ± 0.7
-	100 PEO	308	118 ± 0.5	4.6 ± 1.36	26 ± 8.8
[C ₂ mpyr][FSI]	20 PVDF	308	57 ± 5.8	1.3 ± 0.13	43± 1.3
		348	95 ± 9.2	5.5 ± 0.50	17 ± 2.7
		308	63 ± 14.1	4.4 ± 1.95	14 ± 7.0
	50 PVDF	348	75 ± 2.2	6.4 ± 0.37	12 ± 1.2
	20 PEO	308	47 ± 1.6	1.4 ± 0.01	33 ± 7.6
	50 PEO	308	54 ± 7.5	2.3 ± 0.01	23 ± 3.3
[P ₁₂₂₂][FSI]	20 PVDF	308	100 ± 8.3	3.6 ± 0.08	28 ± 2.3
		348	351 ± 51.1	21.8 ± 1.89	16 ± 1.0
	50 PVDF	308	361 ± 5.0	12.4 ± 0.55	29 ± 1.2
		348	479 ± 6.8	36.9 ± 0.51	13 ± 0.0
	80 PEO	308	N/A	N/A	N/A
	50 PEO	308	38 ± 3.2	2.1 ± 0.77	17 ± 6.0
[HMG][FSI]	20 PVDF	308	12 ± 1.7	0.4 ± 0.14	29 ± 5.6
		348	504 ± 59.0	40.6 ± 4.74	12 ± 2.7
		308	16 ± 7.7	0.6 ± 0.03	26 ± 11.1
	50 F V D F	348	279 ± 22.9	21.3 ± 1.07	13 ± 1.8
	20 PEO	308	3 ± 0.4	0.5 ± 0.66	5 ± 7.6
	50 PEO	308	14 ± 0.7	6.8 ± 2.80	2 ± 1.3
[N ₁₁₁₁][FSI]		308	1.6 ± 0.0	0.4 ± 0.02	4 ± 0.2
	20 PVDF	348	57 ± 0.9	4.9 ± 0.08	11 ± 0.5
		308	2 ± 1.7	0.9 ± 0.23	3 ± 1.6
		348	29 ± 1.3	4.5 ± 0.21	6 ± 0.5
	20 PEO	308	N/A	N/A	N/A
	50 PEO	308	6 ± 2.4	0.5 ± 0.21	13 ± 2.8
[N _{111CN}][FSI]		308	N/A	N/A	N/A
	20 PVDF	348	N/A	N/A	N/A
		308	5 ± 1.5	0.9 ± 0.11	6 ± 1.8
	50 PVDF	348	2 ± 0.2	1.9 ± 0.36	1 ± 1.0
	20 PEO	308	2 ± 0.6	0.7 ± 0.09	2 ± 0.5

Synchrotron powder X-ray diffraction

Figure S2: Synchrotron powder XRD patterns collected at 35 and 75 °C ($\lambda = 0.6882361(4)$ Å) for neat [C₂mpyr][FSI] (blue), neat PVDF (green) and the composites 80[C₂mpyr][FSI]:20PVDF (black), and 50[C₂mpyr][FSI]:50PVDF (red). Details of the peaks are magnified and numbered.

Figure S3: Synchrotron powder XRD patterns collected at 35 and 75 °C (λ = 0.6882361(4) Å) for neat [HMG][FSI] (blue), neat PVDF (green) and the composites 80[HMG][FSI]:20PVDF (black), and 50[HMG][FSI]:50PVDF (red). Details of the peaks are magnified and numbered.

Line width (FWHMs) and Area fraction of narrow peak

Figure S4. ¹H Line full width at half-maximum (FWHMs) b) neat $[P_{1222}][FSI]$, c) neat [HMG][FSI], d) neat $[N_{1111}][FSI]$, e) neat $[N_{111CN}][FSI]$, and their corresponding PVDF and PEO composites.

Figure S5. a) ¹⁹F Line full width at half-maximum (FWHMs) of neat $[C_2mpyr][FSI]$ and its PVDF and PEO composites. ¹⁹F Area Fraction of Narrow Peak of: b) neat $[P_{1222}][FSI]$, c) neat [HMG][FSI], d) neat $[N_{1111}][FSI]$, e) neat $[N_{111CN}][FSI]$, and their corresponding PVDF and PEO composites.

Table S3. Fitting parameters of the fluorine nuclei in the OIPCs. The parameters of the FSI anion were extracted from ¹⁹F NMR spectra of the pure OIPCs at 35° C by iterative fitting to a simulated CSA pattern and gauss/Lorentzian line shape function using the DMfit software.

OIPC	Model	Chemical shift (ppm)	Relative Intensity	δ (CSA)	η(CSA)
[C ₂ mpyr][FSI]	gauss/Lorentzian	95.6	1	-	-
[HMG][FSI]	CSA	95.8	1	-73.51	0.99
[P ₁₂₂₂][FSI]	gauss/Lorentzian	95.6	0.01	-	-
	CSA	94.2	0.99	49.5	0.14
[N ₁₁₁₁][FSI]	CSA	91.5	1	-129	0.46
[N _{111CN}][FSI]	gauss/Lorentzian	93.9	0.00	-	-
	CSA	94.3	0.1	78.85	0.26

Surprisingly, the [FSI]⁻ anions exhibit very different CSA pattern shapes depending on the OIPC cation. The CSA line shapes are quantified by parameters including the asymmetry parameter (η) which indicates how much the environment around the fluorine nucleus deviates from axial symmetry and takes values between 0 and 1.¹ The shape of the [P₁₂₂₂][FSI] CSA pattern presents a CSA asymmetry parameter (η) near zero (~0.14) and suggests that fluorine atoms have an axially symmetry in the [FSI] anion. The value of η increases, [N_{111CN}][FSI]< [N₁₁₁₁][FSI]< [HMG][FSI], and indicates a deviation of the axially symmetry of the fluorine in these OIPCs (Figure 9)(Table S3). These differences are a result of the symmetry, size and packing of cations that surround them.

Electrochemical impedance spectroscopy (EIS)

Figure S6. a) Example of Nyquist plot acquisition over a temperature range in neat [HMG][FSI] pellet. b) Example of Nyquist plot fitting to obtain resistance value of $50[C_2mpyr][FSI]:50PVDF$.

References SI

[1] H. W. Spiess, in *Dynamic NMR Spectroscopy* (Eds.: A. Steigel, H. W. Spiess), Springer Berlin Heidelberg, Berlin, Heidelberg, **1978**, pp. 55-214.