## **Electronic Supporting Information**

## Mechanochemical synthesis of sodium dicarboxylates as anode materials in sodium ion batteries

Daniel N. Rainer, Aamod V. Desai, A. Robert Armstrong,\* and Russell E. Morris\*

All chemicals were used as received and the respective suppliers can be found below.

| Chemical                       | Abbreviation | Supplier                   |
|--------------------------------|--------------|----------------------------|
| Sodium acetate anhydrous       | NaOAc-d      | Sigma-Aldrich              |
| Sodium acetate trihydrate      | NaOAc-h      | Alfa Aesar                 |
| 1,4-benzenedicarboxylic acid   | BDC          | Sigma-Aldrich              |
| 2,5-Pyridinedicarboxylic acid  | PDC          | Sigma-Aldrich              |
| 4,4'-biphenyldicarboxylic acid | BPDC         | Sigma-Aldrich              |
| 4,4'-Stilbenedicarboxylic acid | SDC          | TCI                        |
| Ethanol                        | EtOH         | VWR                        |
| Sodium carboxymethyl cellulose | CMC          | Sigma-Aldrich              |
| Sodium alginate                | SA           | Sigma-Aldrich              |
| Conductive carbon              | Super C65    | Imerys – Graphite & Carbon |

**Table S1.** Details for mechanochemical experiments, all conducted in a Retsch Mixer Mill MM 400, operated at 30 Hz. All products were dried in an oven at 80 °C directly after milling or after a washing step. Products of highlighted rows were used for electrochemical testing.

| BDC  | NaOAc-h | NaOAc-d | M/L  | Liquid | η       | Jar  | Balls | Time  | Workup | Yield |
|------|---------|---------|------|--------|---------|------|-------|-------|--------|-------|
| (mg) | (mg)    | (mg)    |      | (μL)   | (µL/mg) | (mL) | (mm)  | (min) |        | (mg)  |
| 274  | 225     | -       | 1    | 0      | 0.2     | 14   | 2x7   | 60    | -      | 0.288 |
| 249  | 255     | -       | 1.25 | 0      | 0.2     | 14   | 2x7   | 60    | -      | 0.266 |
| 225  | 276     | -       | 1.5  | 0      | 0.2     | 14   | 2x7   | 60    | -      | 0.239 |
| 191  | 313     | -       | 2    | 0      | 0.25    | 14   | 2x7   | 90    | -      | 0.204 |
| 145  | 356     | -       | 3    | 0      | 0.3     | 14   | 2x7   | 60    | -      | 0.166 |
| 129  | 371     | -       | 3.5  | 0      | 0.3     | 14   | 2x7   | 90    | -      | 0.208 |
| 117  | 383     | -       | 4    | 0      | 0.3     | 14   | 2x7   | 60    | -      | 0.175 |
| 335  | -       | 165     | 1    | 0      | 0       | 25   | 2x12  | 240   | -      | n.d.  |
| 1005 | -       | 496     | 1    | 0      | 0       | 14   | 2x7   | 90    | -      | n.d.  |

| BPDC | NaOAc-h | NaOAc-d | M/L | Liquid     | η       | Jar  | Balls | Time  | Workup | Yield |
|------|---------|---------|-----|------------|---------|------|-------|-------|--------|-------|
| (mg) | (mg)    | (mg)    |     | (μL)       | (µL/mg) | (mL) | (mm)  | (min) |        | (mg)  |
| 374  | -       | 127     | 1   | 250 (H2O)  | 0.5     | 14   | 2x7   | 60    | -      | 0.349 |
| 297  | -       | 202     | 2   | 250 (H2O)  | 0.5     | 14   | 2x7   | 60    | -      | 0.280 |
| 297  | -       | 202     | 2   | 250 (EtOH) | 0.5     | 14   | 2x7   | 60    |        | 0.421 |
| 249  | -       | 252     | 3   | 250 (H2O)  | 0.5     | 14   | 2x7   | 60    | -      | 0.385 |
| 249  | -       | 252     | 3   | 250 (EtOH) | 0.5     | 14   | 2x7   | 60    | EtOH   | 0.420 |
| 213  | -       | 288     | 4   | 250 (EtOH) | 0.5     | 14   | 2x7   | 60    | -      | 0.352 |

| SDC  | NaOAc-h | NaOAc-d | M/L | Liquid     | η       | Jar  | Balls | Time  | Workup | Yield |
|------|---------|---------|-----|------------|---------|------|-------|-------|--------|-------|
| (mg) | (mg)    | (mg)    |     | (μL)       | (µL/mg) | (mL) | (mm)  | (min) |        | (mg)  |
| 383  | -       | 117     | 1   | 250 (H2O)  | 0.5     | 14   | 2x7   | 60    | -      | 0.359 |
| 239  | 161     | -       | 1.3 | 0          | 0.2     | 14   | 2x7   | 15    | -      | 0.239 |
| 199  | 201     | -       | 2   | 0          | 0.2     | 14   | 2x7   | 15    | -      | 0.211 |
| 248  | 252     | -       | 2   | 120 (H2O)  | 0.5     | 14   | 2x7   | 60    | EtOH   | 0.252 |
| 261  | -       | 239     | 3   | 250 (H2O)  | 0.5     | 14   | 2x7   | 60    | -      | 0.343 |
| 225  | -       | 275     | 4   | 250 (EtOH) | 0.5     | 14   | 2x7   | 60    | -      | 0.354 |

| PDC  | NaOAc-h | NaOAc-d | M/L | Liquid     | η       | Jar  | Balls | Time  | Workup | Yield |
|------|---------|---------|-----|------------|---------|------|-------|-------|--------|-------|
| (mg) | (mg)    | (mg)    |     | (μL)       | (µL/mg) | (mL) | (mm)  | (min) |        | (mg)  |
| 335  | -       | 165     | 1   | 250 (EtOH) | 0.5     | 14   | 2x7   | 60    | -      | 0.352 |
| 208  | 192     | -       | 1.1 | 0          | 0.2     | 14   | 2x7   | 60    | -      | 0.191 |
| 202  | -       | 198     | 2   | 0          | 0       | 14   | 2x7   | 15    | -      | 0.250 |
| 152  | 248     | -       | 2   | 0          | 0.25    | 14   | 2x7   | 60    | -      | 0.142 |
| 152  | 248     | -       | 2   | 103 (H2O)  | 0.5     | 14   | 2x7   | 60    | -      | 0.165 |
| 152  | 248     | -       | 2   | 103 (EtOH) | 0.5     | 14   | 2x7   | 60    | -      | 0.143 |
| 202  | -       | 298     | 3   | 250 (EtOH) | 0.5     | 14   | 2x7   | 60    | -      | 0.249 |



**Figure S1.** PXRD patterns (normalised) of the mechanochemical product of sodium acetate and BDC in various metal-linker ratios (M/L), employing 30 Hz and using 14 mL jars with two 1.3 g (7 mm diameter) stainless steel balls.



**Figure S2.** PXRD patterns (normalised) of the mechanochemical product of sodium acetate and BDC (ratio of 1:1) without liquid, employing 30 Hz. Experiments using 14 mL jars with two 1.3 g (7 mm diameter) stainless steel balls (*left*) and experiments using 25 mL jars with two 7 g (12 mm diameter) stainless steel balls (right)



**Figure S3.** Characterisation of mechanochemically synthesised Na-BPDC. PXRD patterns (normalised) of the mechanochemical product of sodium acetate and BPDC in various metallinker ratios (M/L), employing 30 Hz and using 14 mL jars with two 1.3 g (7 mm diameter) stainless steel balls (*top left*); FTIR spectra of selected samples (*top right*); TGA profile (*bottom left*) and SEM image (*bottom right*) of Na-BPDC sample used for electrochemical testing (M/L=3, washed).



**Figure S4.** Characterisation of mechanochemically synthesised Na-SDC. PXRD patterns (normalised) of the mechanochemical product of sodium acetate and SDC in various metallinker ratios (M/L), employing 30 Hz and using 14 mL jars with two 1.3 g (7 mm diameter) stainless steel balls (*top left*); FTIR spectra of selected samples (*top right*); TGA profile (*bottom left*) and SEM image (*bottom right*) of Na-SDC sample used for electrochemical testing (M/L=2, washed).



**Figure S5.** Characterisation of mechanochemically synthesised Na-PDC. PXRD patterns (normalised) of the mechanochemical product of sodium acetate and PDC in various metallinker ratios (M/L), employing 30 Hz and using 14 mL jars with two 1.3 g (7 mm diameter) stainless steel balls (*top left*); FTIR spectra of selected samples (*top right*); TGA profile (*bottom left*) and SEM image (*bottom right*) of Na-PDC sample used for electrochemical testing (M/L=2, EtOH).



**Figure S6**. CV profile for Na-BDC at a scan rate of 0.1 mV s<sup>-1</sup> (*left*) and charge/discharge curves from rate capability for 1<sup>st</sup> cycle at different current densities (*right*).



**Figure S7**. a) Galvanostatic charge/discharge profile and b) differential capacity plot for the first three cycles of an electrode prepared using Super C65 (90%) and CMC (10%) and cycled between 0.01–2.5 V at 100 mA g<sup>-1</sup>. c) Discharge capacity of the electrode over 50 cycles. The discharge capacity stabilises at ~112 mAh g<sup>-1</sup>, which would correspond to a maximum capacity contribution of 37.3 mAh g<sup>-1</sup> for electrodes prepared with 30% conductive carbon (Super C65).



**Figure S8.** Discharge capacity (DC) for unwashed Na-BPDC (50 cycles) and DC and Coulombic efficiency (CE) for washed Na-BPDC (100 cycles) measured at 100 mAh g<sup>-1</sup> in a voltage window of 0.01–2.5 V for both samples (*left*) and CV profile for Na-BPDC at scan rate of 0.1 mV s<sup>-1</sup> (*right*).



**Figure S9**. Rate performance for Na-BPDC at different current rates, where cycling was carried out 5 times at each step in a voltage window of 0.01–2.5 V (*left*) and corresponding charge/discharge profiles for 1<sup>st</sup> cycle at different current densities (*right*).



**Figure S10.** Discharge capacity (DC) for unwashed Na-SDC (50 cycles) and DC and Coulombic efficiency (CE) for washed Na-SDC (100 cycles) measured at 100 mAh g<sup>-1</sup> in a voltage window of 0.01–2.5 V for both samples (*left*) and CV profile for Na-SDC at scan rate of 0.1 mV s<sup>-1</sup> (*right*).



**Figure S11.** Rate performance for Na-SDC at different current rates, where cycling was carried out 5 times at each step in a voltage window of 0.01–2.5 V (*left*) and corresponding charge/discharge curves for 1<sup>st</sup> cycle at different current densities (*right*).



**Figure S12**. CV profile for Na-PDC at scan rate of 0.1 mV s<sup>-1</sup> (*left*) and discharge capacity (DC) and Coulombic efficiency (CE) for Na-PDC at current density of 100 mAh g<sup>-1</sup>, cycled between 0.01–2.5 V (*right*).



**Figure S13.** Rate performance for Na-PDC at different current rates, where cycling was carried out 5 times at each step in a voltage window of 0.01–2.5 V (*left*) and corresponding charge charge/discharge profiles for 1<sup>st</sup> cycle at different current densities (*right*).

**Table S2**. Brief comparison of electrochemical properties for the materials synthesised from solution and by mechanochemical methods. The value denoted with an asterisk (\*) is not explicitly mentioned in the referenced article but estimated from the plot shown in the publication.

| Synthesis method                                         | Binder             | Electrode composition<br>(active:<br>conductive carbon:<br>binder) | Galvanostatic cycling performance<br>Discharge capacity,<br>rate,<br>cycle number | Reference |
|----------------------------------------------------------|--------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------|
| Na-BDC                                                   |                    |                                                                    |                                                                                   |           |
| Mechanochemical                                          | СМС                | 60:30:10                                                           | 230 mA h g <sup>-1</sup> ,<br>100 mA g <sup>-1</sup> ,<br>100                     | This work |
| Solution (RT - EtOH) – NaHBDC                            | Sodium<br>alginate | 50:35:15 or<br>60:30:10                                            | 244 mA h g <sup>-1</sup> ,<br>20 mA g <sup>-1</sup><br>50                         | [1]       |
| Na-BPDC                                                  |                    |                                                                    |                                                                                   |           |
| Mechanochemical                                          | СМС                | 60:30:10                                                           | 184 mA h g <sup>-1</sup> ,<br>100 mA g <sup>-1</sup> ,<br>100                     | This work |
| Solution ( $H_2O$ -EtOH) – $Na_2BPDC$                    | СМС                | 57.1:28.6:14.3                                                     | ~190-200 mA h g <sup>-1</sup> ,*<br>20.3 mA g <sup>-1</sup> ,<br>150              | [2]       |
| Na-SDC                                                   |                    |                                                                    |                                                                                   |           |
| Mechanochemical                                          | СМС                | 60:30:10                                                           | 146 mA h g <sup>-1</sup> ,<br>100 mA g <sup>-1</sup> ,<br>100                     | This work |
| Solution (RT - EtOH) – Na <sub>2</sub> SDC               | СМС                | 50:40:10                                                           | 204 mA h g <sup>-1</sup> ,<br>50 mA g <sup>-1</sup> ,<br>50                       | [3]       |
| Na-PDC                                                   |                    |                                                                    |                                                                                   |           |
| Mechanochemical                                          | СМС                | 60:30:10                                                           | 187 mA h g <sup>-1</sup> ,<br>100 mA g <sup>-1</sup> ,<br>100                     | This work |
| Solution (Reflux – water and EtOH) – Na <sub>2</sub> PDC | PVDF               | 50:35:15                                                           | 225 mA h g <sup>-1</sup> ,<br>25.4 mA g <sup>-1</sup> ,<br>100                    | [4]       |

## **References**:

- 1 A. Abouimrane, W. Weng, H. Eltayeb, Y. Cui, J. Niklas, O. Poluektov and K. Amine, *Energy Environ. Sci.*, 2012, **5**, 9632.
- 2 A. Choi, Y. K. Kim, T. K. Kim, M.-S. Kwon, K. T. Lee and H. R. Moon, *J. Mater. Chem. A*, 2014, **2**, 14986–14993.
- 3 C. Wang, Y. Xu, Y. Fang, M. Zhou, L. Liang, S. Singh, H. Zhao, A. Schober and Y. Lei, *J. Am. Chem. Soc.*, 2015, **137**, 3124–3130.
- 4 H. Padhy, Y. Chen, J. Lüder, S. R. Gajella, S. Manzhos and P. Balaya, *Adv. Energy Mater.*, 2018, **8**, 1701572.