Supporting Information

Highly intrinsic thermal conductivity of cellulose nanocrystals films

through pitch regulation

Jianyu Zhang,^a Tianxing Chen,^a Siyuan Liu,^a Zhixin Chen,^b Yao Li,^a Shenmin Zhu,*^a and Hua

Li*a a State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University,

Shanghai 200240, China.

^b School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong,

Wollongong, NSW 2522, Australia.

* Corresponding author. E-mail: <u>smzhu@sjtu.edu.cn</u>

Fig. S1 Optical images of (a) CNCs- Fe₃O₄/CNC-1.10-H11-90 film, (b) CNCs- Fe₃O₄/CNC-1.10-H23-90 film, (c) CNCs- Fe₃O₄/CNC-1.10-H11-45 film, (d) CNCs- Fe₃O₄/CNC-1.10-H23-45 film.
90 and 45 represent the angle of the vertical magnetic field tilt. Fe₃O₄/CNC agglomeration

appeared in all films. The white circles circled the reunion areas.

Fig. S2 SEM images of oblique section of the CNC-Fe₃O₄/CNC film, (a) and (b).in different

magnifications.

Fig. S3 The cross-section TEM images of CNC-Fe₃O₄/CNC-1.10 film (a, c, d), the selected area electron diffraction (SAED) pattern of one Fe₃O₄ particle shown in (b), measurement results of the Fe₃O₄ particle size from Fig. S3c image (e), measurement results of the Fe₃O₄ particle size from

Fig. S3d image (f).

Fig. S4 POM images of (a) CNCs film, (b) CNC-Fe₃O₄/CNC-1.90 film, (c) CNC-Fe₃O₄/CNC-

Fig. S5 Circular dichroism spectra for CNC-Fe₃O₄/CNC-1.10 film, CNC-Fe₃O₄/CNC-1.90 film, and CNC-Fe₃O₄/CNC-2.84 film.

Fig. S6 Circular dichroism spectra of (a) CNC-Fe₃O₄/CNC-1.90 films, (b) CNC-Fe₃O₄/CNC-2.84

films formed under different magnetic field intensities.

Fig. S7 Optical images of (a) CNC-Fe₃O₄/CNC-1.90-H0 film, (b) CNC-Fe₃O₄/CNC-1.90-H11

film, (c) CNC-Fe₃O₄/CNC-1.90-H23 film, (d) CNC-Fe₃O₄/CNC-2.84-H0 film, (e) CNC-

Fe₃O₄/CNC-2.84-H11 film, (f) CNC-Fe₃O₄/CNC-2.84-H23 film.

Fig. S8 SEM images of cross-sections of the CNC-Fe₃O₄/CNC-1.10 films formed under different magnetic field intensities and the pitch sizes measured from the images. The scale bar is 1 μ m. (a1) and (a2) 0 mT, (b1) and (b2) 11 mT, (c1) and (c2) 23 mT, (d1) and (d2) 32mT, (e1) and (e2) 56 mT, (f1) and (f2) 108 mT.

Fig. S9 SEM images of cross-sections of the CNC-Fe₃O₄/CNC-1.10 films formed under magnetic

field intensity of (a) 32 mT, (b) 108 mT.

Fig. S10 The out-plane thermal diffusivities (TD) and thermal conductivities (TC) of (a) CNC-Fe₃O₄/CNC-1.90 films, (b) CNC-Fe₃O₄/CNC-2.84 films under different magnetic field intensities.

Fig. S11 The in-plane thermal diffusivities (TD) and thermal conductivities (TC) of

(a) films with different contents of Fe₃O₄, (b) CNC-Fe₃O₄/CNC-1.90 films formed under different

magnetic field intensities.

Fig. S12 The transparent CNC-Fe₃O₄/CNC-1.10-H32 film as thermochromic membrane.

$$X_C = ((I_{002} - I_{am}) / I_{002}) \times 100$$

where I_{am} is the diffraction intensity of o the amorphous phase taken at angle around $18^{\circ} - 19^{\circ}$. I_{002} is the intensity of the (0 0 2) peak, which is the maximum intensity in XRD. From the XRD pattern in Fig. 2b, the crystallinities of the CNCs prepared by us and CNCs in Fe₃O₄/CNC are caculated as:

Sample	I ₀₀₂	I _{am}	X_C
CNCs	1778	218	87.7 %
CNCs in Fe ₃ O ₄ /CNC	373	45	87.9 %

Table S1 The crystallinities of CNCs and CNCs in Fe $_3O_4$ /CNC

Table S2 Through-plane thermal conductivities

Sample	Thermal	Density	specific heat	Thermal
	diffusivity	$(g cm^{-3})$	capacity	conductivity
	(mm^2s^{-1})		$(J g^{-1} k^{-1})$	(Wm ⁻¹ K ⁻¹)
CNCs	0.197±0.002	1.479	1.539	0.448±0.005
CNC-Fe ₃ O ₄ /CNC-1.10-H0	0.211±0.003	1.504	1.490	0.473±0.007
CNC-Fe ₃ O ₄ /CNC-1.10-H11	0.237±0.005	1.523		0.538±0.011
CNC-Fe ₃ O ₄ /CNC-1.10-H23	0.263±0.003	1.532		$0.600 {\pm} 0.007$
CNC-Fe ₃ O ₄ /CNC-1.10-H32	0.351±0.003	1.525		0.798±0.007
CNC-Fe ₃ O ₄ /CNC-1.10-H56	0.349±0.003	1.518		0.790±0.007
CNC-Fe ₃ O ₄ /CNC-1.10-H108	0.309±0.005	1.518		0.699±0.011
CNC-Fe ₃ O ₄ /CNC-1.90-H0	0.225±0.001	1.496	1.457	0.490±0.002
CNC-Fe ₃ O ₄ /CNC-1.90-H11	0.235±0.002	1.523		0.521±0.004
CNC-Fe ₃ O ₄ /CNC-1.90-H23	0.238±0.009	1.482		0.514±0.019
CNC-Fe ₃ O ₄ /CNC-2.84-H0	0.224±0.003	1.518	1.475	0.502±0.007
CNC-Fe ₃ O ₄ /CNC-2.84-H11	0.167±0.001	1.501		0.370±0.002
CNC-Fe ₃ O ₄ /CNC-2.84-H23	0.176±0.003	1.525		0.396±0.007

Table S3 In-plane thermal conductivities

Sample	Thermal	Density	specific heat	Thermal
	diffusivity	$(g \text{ cm}^{-3})$	capacity	conductivity
	(mm^2s^{-1})		$(J g^{-1} k^{-1})$	(Wm ⁻¹ K ⁻¹)
CNC-Fe ₃ O ₄ /CNC-1.10-H0	0.875±0.028	1.504	1.490	1.961±0.063
CNC-Fe ₃ O ₄ /CNC-1.90-H0	0.883±0.01	1.496	1.457	1.925±0.022
CNC-Fe ₃ O ₄ /CNC-1.90-H11	0.936±0.00	1.523		2.077±0.00
CNC-Fe ₃ O ₄ /CNC-1.90-H23	0.94±0.062	1.482		2.030±0.134
CNC-Fe ₃ O ₄ /CNC-2.84-H0	0.924±0.019	1.518	1.475	2.069±0.043