Electronic Supplementary Information

Carbon nanobowls supported chemical functionalized PtRh nanocrystals: A highly active and methanol tolerant electrocatalyst towards oxygen reduction reaction

Ze-Nong Zhang,^a Bo-Qiang Miao,^b Zhu-Qing Wu,^a Pei Chen,^b Xue Xiao,^{*c} Shu-Ni Li,^{*a} and Yu Chen^b

^a Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.

^b School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China.

^cCentre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.

* Corresponding authors

E-mails: lishuni@snnu.edu.cn (S. Li); tiffanyxx110@gmail.com (X. Xiao)

The preparation of working electrode

The electrocatalyst covered glassy carbon working electrode was prepared according to the previously reported procedure.^{1, 2} Briefly, the electrocatalyst suspension was achieved by ultrasonic mixing 8 mg of electrocatalyst and 4 mL of isopropanol/Nafion[®] solution (20% isopropanol and 0.02% Nafion[®]) for 1 h. Then, 10 μ L of electrocatalyst ink was drop-coated on a clean glassy carbon electrode and dried at room temperature. Finally, the working electrode was put in an electrochemical cell containing 0.5 M H₂SO₄ electrolyte for electrochemical measurement.

Measurement of ECSA

The ECSA value of electrocatalyst was achieved from equation 1 by integrating H desorption charge.

$$ECSA = \frac{Q}{m \times C} \tag{1}$$

where Q was the charge in the H desorption region at CV curve, m was the noble metal loading amount on the working electrode, and C (210 μ C cm⁻²) was monolayer hydrogen adsorption charge on noble metal surface. ^{1, 2}.

Calculation of ORR kinetic parameters

Based on the ORR polarization curves, the kinetic current density (i_k) of ORR at electrocatalyst was calculated using Koutecky-Levich equation (eq. 2).

$$\frac{1}{i} = \frac{1}{i_k} + \frac{1}{id}$$

$$= \frac{1}{i_k} + \frac{1}{\omega B^{1/2}}$$

$$= \frac{1}{i_k} + \frac{1}{0.62nFA_{geo}D^{2/3}B^{1/2}v^{-1/6}Co_2}$$
(2)

where *i* was the measured ORR current density, i_k was the kinetic current density, i_d was the ORR diffusion limited current density, *B* was a constant (*i.e.*, Levich slope), and ω was the rotation rate, *n* was electron transfer number, *F* was the Faraday constant, A_{geo} was the geometric surface area of working electrode, *D* was the diffusion coefficient of O₂ molecule, *v* was the kinematic viscosity of electrolyte, and C_{O2} was the concentration of O₂ in electrolyte. Meanwhile, the ORR electron transfer number (*n*) could be determined from Levich slope (*B*).

Scheme S1. The structure of BmimBF₄.

Figure S1. N_2 adsorption-desorption isotherms of (A) carbon nanobowls and (B) Vulcan XC-72.

Figure S2. SEM image of Pt₁Rh₁@BmimBF₄/CNBs nanohybrids.

Figure S3. EDX pattern of $Pt_1Rh_1@BmimBF_4/CNBs$ nanohybrids. Herein, the strong Si signal comes from Si substrate.

Figure S4. SEM-EDX elemental maps mixed BmimBF₄-Pt^{II+}BmimBF₄-Rh^{III} complex precipitates.-

Figure S5. HAADF-STEM and EDX elemental maps of Pt₁Rh₁@BmimBF₄/CNBs.

Figure S6. I-t curves of Pt₁Rh₁@BmimBF₄/CNBs and Pt₁Rh₁/CNBs.

Figure S7. TEM image of commercial Pt/C electrocatalyst.

Figure S8. CV curves of Pt1Rh1@BmimBF4/CNBs and Pt1Rh1/CNBs without

BmimBF₄ in N₂-saturated 0.5 M H₂SO₄ solutions at 50 mV s⁻¹. Pt₁Rh₁ /CNBs without BmimBF₄ were obtained by the following procedure. At first, 2 mL of 0.05 M mercaptoacetic acid solution was added into 10 mL of 1 mg mL⁻¹ Pt₁Rh₁@BmimBF₄/CNBs suspension, and stirred for 24 h. In this process, BmimBF₄ molecules bound on PtRh surface were replaced by mercaptoacetic acid due to strong S-metal bond interaction. Then, the mercaptoacetic acid modified Pt₁Rh₁/CNBs were treated with UV/ozone (wavelength at 185 and 254 nm in air for 4 h) to remove mercaptoacetic acid. After removal of BmimBF₄, ECSA of Pt₁Rh₁/CNBs is estimated to be 77.91 m² g⁻¹, showing the surface coverage of BmimBF₄ layers on Pt₁Rh₁@BmimBF₄/CNBs is only 19.4%.

Figure S9. ORR polarization curves of (A) $Pt_1Rh_1@BmimBF_4/CNBs$ and (B) Pt/C electrocatalyst before and after accelerated durability tests O₂-purged 0.5 M H₂SO₄ electrolyte at 1600 rpm and at 5 mV s⁻¹.

Figure S10. EDX spectrum Pt₁Rh₁@BmimBF₄/CNBs after durability test.

Electrocatalyst	electrolyte	$E_{1/2}(V)$	$E_{\text{onset}}\left(\mathbf{V}\right)$	Ref.
Pt1Rh1@BmimBF4/CNBs	0.5 M H ₂ SO ₄	0.85	0.99	This
Pt/N-doped carbon	0.5 M H ₂ SO ₄	0.88	0.95	2021 ³
Pt-CeOx nanowire/C	$0.5 \mathrm{~M~H_2SO_4}$	ca. 0.72	0.93	20214
Pt hollow tetrapods	$0.5 \mathrm{~M~H_2SO_4}$	0.83	1.06	20215
Pt@Ni-N-C nanocomplexes	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	0.85	ca. 0.92	20206
Pt/N-doped graphene	$0.5 \mathrm{~M~H_2SO_4}$	0.868	0.94	20207
Pt nanoparticles/carbon nanotube	0.5 M H ₂ SO ₄	ca. 0.66	0.98	20208
Pt ₇ Y ₃ nanoparticles	0.5 M H ₂ SO ₄	ca. 0.56	ca. 0.80	2020 ⁹
Pt/Ir/XC72	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	ca. 0.76	ca. 0.88	202010
Pt/TiN	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	ca. 0.87	ca. 0.96	202011
Pt/rGO+Ir/carbon nanotube	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	ca. 0.81	ca. 0.90	202012
PtRuFeCo/rGO	$0.5 \mathrm{~M~H_2SO_4}$	ca. 0.75	ca. 0.86	201913
Pt ₃ Sc/carbon nanotubes	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	0.68	0.89	201914
Pd ₃ Y nanoparticles	$0.1 \text{ M} \text{H}_2 \text{SO}_4$	0.851	ca.0.98	201915
Pt-WP- graphene nanosheet	$0.5 \mathrm{~M~H_2SO_4}$	0.61	ca. 0.85	201816

Table S1. The $E_{1/2}$ and/or E_{onse} values of ORR at various Pt-based electrocatalysts in H₂SO₄ electrolyte

References

- G.-R. Xu, B. Wang, J.-Y. Zhu, F.-Y. Liu, Y. Chen, J.-H. Zeng, J.-X. Jiang, Z.-H. Liu, Y.-W. Tang and J.-M. Lee, *ACS Catal.*, 2016, 6, 5260-5267.
- 2 Q. Xue, J. Bai, C. Han, P. Chen, J.-X. Jiang and Y. Chen, ACS Catal., 2018, 8, 11287-11295.
- 3 D. Ganguly, K. Ramanujam and S. Ramaprabhu, J. Electrochem. Soc., 2021, 168, 064517.
- 4 S. Chauhan, T. Mori, T. Kobayashi, S. Yamamoto, S. Ito, G. Auchterlonie, R. Wepf, S. Ueda and F. Ye, *J. Am. Ceram. Soc.*, 2021, **104**, 1945-1952.
- 5 M. Li, A. Yang, S. Wang, Y. Wang, Q. Huang, B. Cai, X. Qiu and Y. Tang, *J. Mater. Chem. A*, 2021, **9**, 11537-11544.
- K. Wang, S. Yang, Y. Yu, M. Dou, Z. Zhang and F. Wang, *Cata.l Sci. Technol.*, 2020, 10, 65-69.
- 7 C. Park, E. Lee, G. Lee and Y. Tak, *Appl. Catal. B-Environ.*, 2020, **268**, 118414.
- 8 E. A. Nagelli, F. J. Burpo, D. A. Marbach, A. N. Romero, D. J. Rabbia, H. W. Mahr, M. H. Jaskot, A. N. Murray and D. D. Chu, *J. Compos. Sci.*, 2020, 4, 160.
- 9 Y.-C. Weng, C.-C. Wu, H.-J. Wang and Y.-Y. Wang, *Electrochim. Acta*, 2020, **340**, 136012.
- D. Kaplan, M. Goor, L. Burstein, I. Popov, M. Shviro and E. Peled, J. Solid State Electrochem., 2020, 24, 2385-2393.
- 11 X. Tang, S. Zhang, J. Yu, C. Lu, Y. Chi, J. Sun, Y. Song, D. Yuan, Z. Ma and L. Zhang, Acta

Phys. Chim. Sin., 2020, 36, 1906070.

- 12 B. Dembinska, A. Zlotorowicz, M. Modzelewska, K. Miecznikowski, I. A. Rutkowska, L. Stobinski, A. Malolepszy, M. Krzywiecki, J. Zak, E. Negro, V. Di Noto and P. J. Kulesza, *Catalysts*, 2020, **10**, 689.
- 13 M. Rethinasabapathy, S.-M. Kang, Y. Haldorai, N. Jonna, M. Jankiraman, G.-W. Lee, S.-C. Jang, B. Natesan, C. Roh and Y. S. Huh, *J. Ind. Eng. Chem.*, 2019, **69**, 285-294.
- 14 M. S. Garapati and R. Sundara, Int. J. Hydrogen Energy, 2019, 44, 10951-10963.
- R. Brandiele, V. Amendola, A. Guadagnini, G. A. Rizzi, D. Badocco, P. Pastore, A. A. Isse, C.
 Durante and A. Gennaro, *Electrochim. Acta*, 2019, **320**, 134563.
- 16 C. Zhang, Y. Dai, H. Chen, Y. Ma, B. Jing, Z. Cai, Y. Duan, B. Tang and J. Zou, J. Mater. Chem. A, 2018, 6, 22636-22644.