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The model construction of IL-PEDOT:Tos 

The ionic liquid (IL) modulated PEDOT:Tos hydrogels with low and high concentration 

(L-PEDOT:Tos and H-PEDOT:Tos) as well as real experimental ratio were constructed 

by adding different quantities of each species. Generally, PEDOT is commonly 

constituted by 3 ~ 18 repeated monomer units (EDOT)1, therefore, we selected 

oligomeric PEDOT containing 9 EDOT units in balance of computational accuracy and 

time-consuming. Based on the experimental report, an oxidation level of 33.3% doping 

(charge equals to +3) of PEDOT was detected. Hence, for (1) L-PEDOT:Tos system, 

12 PEDOT, 36 Tos (-1 charged), and 5356 water were added in a sufficient large 9 × 6 

× 4 nm3 unit cell based on our previous work; (2) H-PEDOT:Tos system, 28 PEDOT, 

84 Tos, and 2670 water were added in same box size. After the pre-balancing, 96 cation-

anion pairs were introduced on top of the box to permit them diffusion into the pristine 

L/H-PEDOT:Tos solution. The amorphous solution model was generated by Packmol 

code2 as the start point to perform molecular dynamic (MD) simulations implemented 

in LAMMPS code3. The parameters of bonded and van der Waals (vdW) nonbonded 

were taken from OPLS-AA force field4, the water solvent was described by SPC/E 

model5, and atomic charge used for Coulombic nonbonded was obtained by the 

restrained electrostatic potential (RESP) method6 which was implemented by Multiwfn 

code7 on top of the structure optimized by B3LYP/6-311G(d,p) level via Gaussian 09 

program8. Each system was firstly relaxed via conjugate gradient algorithm, then 

followed by 5 ns NPT run (293 K, 1 bar) using the Parrinello-Rahman barostat, 

subsequent by equilibration in the NVT ensemble (293 K, 1 bar) using the Nose-Hoover 

thermostat until the density and total energy reached equilibrium (∼ 20 ns). The time 

step in whole simulations was 0.1 fs, and cutoff for the vdW interaction was 12 Å. 

Finally, a 10 ns production run for the radial distribution function (RDF) simulations 

and sampling were performed. 5000 snapshots for hole transport simulations by 

quantum mechanics calculations were abstracted every 10 ps.  

To obtain the hole hopping rate (kn) and mobility (μ), the critical items of transfer 

integral (Vij), reorganization energy (λ), and hopping site energy (the HOMO energy) 

were computed separately in different level by Gaussian program. The Vij was 

performed by semiempirical ZINDO/S9-10 level for dimeric fragments, and the λ was 
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finished by B3LYP/6-311G(d,p) to perform the structure optimization and frequency 

calculation. 
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The calculation of reorganization energy 

The reorganization energy (λ) is related to the energy change with the geometry 

relaxation during charge transport, which can be evaluated by the adiabatic potential 

energy surface method (the four-point method) and normal mode analysis. The former 

is expressed as11: 

λ = λ1 + λ2 = (E+
0 - E0) + (E0

+ - E+
+)     

where E+
0 is the energy of the neutral molecule calculated on top of the optimized 

cationic state, E0 is the energy of the optimized neutral molecule at ground state, E0
+ is 

the energy of the cation calculated on top of the optimized neutral state, and E+
+ is the 

energy of the optimized cation, respectively.  

And the normal mode analysis assigns the λ to the contribution from each 

vibrational mode:12 

2 2

1 2 1 2

1 1

2 2
i j i i j j

i j i j

Q Q      = + = + =  +       

where λ1i and λ2j stand for the contributions to the λ from vibrational modes i and j of 

the neutral and cationic geometries separately, ωi and ωj represent for the vibrational 

frequencies of modes i and j, and ΔQi and ΔQj are the displacements along the ith and 

jth mode coordinates between the equilibrium positions of neutral and cationic states, 

respectively. By contrast to the Vij, a minimized λ potentially ensures a large hole 

hopping rate kn. And in this work, we used the first method to calculate λ, and its value 

is 0.1 eV. 
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The calculation of hole mobility 

The hole mobility (μ) can be obtained based on the non-adiabatic Marcus charge 

transfer theory13-15:  
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where ħ is reduced Planck’s constant, Vij is the transfer integral, kB is Boltzmann’s 

constant, T is temperature in Kelvin, λ is the reorganization energy, and ΔGij is the 

energy difference in sites i and j, respectively. Accordingly, the hole mobility (μ) is 

estimated by Einstein equation:16 
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 =   
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where e and D in numerator represent for the unit charge and diffusion coefficient. 

Correspondingly, to calculate D, a spatial dimensionality d should be defined (here 

taken as 1 for amorphous morphology), and associated centroid to centroid distance (rn), 

kn, as well as the hopping probability for the nth hopping pathway ( /n n n

n

p kk=  ) 

should be as the input to obtain the diffusion coefficient.  
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Experiment 

Materials 

PEDOT:PSS aqueous solution (1.5% in water) was supplied by Shanghai Aladdin 

Biochemical Technology Co. LTD. High purity [EMIM][TFSI] (99.0%) were 

purchased from Shanghai Chengjie Chemical Co. LTD. The chemicals were used as 

received without any treatment. 

Sample preparation 

[EMIM][TFSI] was dissolved in ultra-pure water at the concentration of 1×10-3 mol L-

1 and was subsequently sonicated for 10 minutes. PEDOT:PSS was added to the diluted 

IL solution at the molar ratio of PEDOT:PSS:H2O at 1:440 and 1:880 and vigorously 

stirred at room temperature overnight. To prepare the films, the mixture solutions were 

spin-casted onto ITO substrates that have been cleaned with a detergent solution: 

sonicated in deionized water, acetone, and isopropyl alcohol for 10 min each and then 

dried at 130 °C for 15 min. The volume of spin coating solution varies from 1 μL, 2 μL, 

5 μL, to 10 μL. To obtain the stable surface structure, the sample was left in air for at 

least 5 hours before AFM scanning.  

Characterization 

The morphological feature of the sample was characterized by Multimode Nanoscope 

8 AFM (Bruker, USA) at room temperature. AFM tips (SNL-10, A tip) with spring 

constant of ~ 0.2 N/m and radius of ~ 2 nm were used. For each sample, 3 different 

areas at least were scanned to ensure the repeatability of the data. The conductivity 

measurement was performed by METTLER TOLEDO FE30. 
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Fig. S1. The R2 varies with the variation of sample size trained by different 

algorithms. a Geometric feature as descriptors. b Electronic feature as descriptors (the 

decision trees used in RF and GBDT algorithms are 350). and c Coulomb matrix (CM) 

as descriptor. 
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Fig. S2. The R2 varies with the variation of sample size and decision trees trained 

by RF algorithm. a Geometric features as descriptor. b Electronic features as descriptor. 

and c Coulomb matrix (CM) as descriptor (The GBDT algorithm produces almost 

identical results, has not shown). 
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Fig. S3. The predicted |Vij| for [EMIM]Cl-L-PEDOT:Tos system. Parity plot 

between the ZINDO/S calculated and different ML learner predicted |Vij| from 10-fold 

cross-validation for a LR, b ANN, c RF, and d GBDT algorithm (the left, middle, and 

right are the results based on geometric feature, electronic feature, and Cij feature as 

descriptors, and the unit of MAE value is in eV). 
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Fig. S4. The predicted |Vij| for [EMIM]Cl-L-PEDOT:Tos system by using 

combined geometric and electronic features. Parity plot between the ZINDO/S 

calculated and ML learner predicted |Vij| from 10 fold cross-validation have been shown 

for a by RF with 300 decision trees and b by ANN with 6 hidden layers (the numbers 

of neurons in each layer are100, and the unit of MAE value is in eV).  
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Fig. S5. The radial distribution function (RDF) of ILs modulated PEDOT:Tos. a 

and c [EMIM][PF6] modulated L-PEDOT:Tos and H-PEDOT:Tos solution. b and d 

[EMIM][TFSI] modulated L-PEDOT:Tos and H-PEDOT:Tos solution, respectively. 
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Fig. S6. The stacked PEDOT abstracted from the last MD snapshot. a and c 

[EMIM][PF6] modulated L-PEDOT:Tos and H-PEDOT:Tos solution. b and d 

[EMIM][TFSI] modulated L-PEDOT:Tos and H-PEDOT:Tos solution, respectively. 
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        (a) [EMIM][PF6]-L-PEDOT:Tos (b) [EMIM][TFSI]-L-PEDOT:Tos 

  

        (c) [EMIM][PF6]-H-PEDOT:Tos   (d) [EMIM][TFSI]-H-PEDOT:Tos 

Fig. S7. The last MD snapshots for IL decorated PEDOT:Tos solution. a and c 

[EMIM][PF6] modulated L-PEDOT:Tos and H-PEDOT:Tos solution. b and d 

[EMIM][TFSI] modulated L-PEDOT:Tos and H-PEDOT:Tos solution, respectively. 
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Fig. S8. The roughness for [EMIM][TFSI] decorated PEDOT:PSS aqueous. a The 

sample of L-PEDOT:PSS. b The sample of H-PEDOT:PSS.  
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