Supporting Information

Carbazol-Phenyl-Phenothiazin-Based Sensitizers for Dye-Sensitized
 Solar Cells

Yunfei Jiao ${ }^{\text {a, }}$, Shuaishuai Liu ${ }^{\text {a }}$, Zhongjin Shen ${ }^{\text {b, }}{ }^{*}$, Le Mao ${ }^{\text {a }}$, Yongjie Ding ${ }^{\text {a }}$, Dan Ren ${ }^{\text {b }}$, Felix Thomas Eickemeyer ${ }^{\mathrm{b}}$, Lukas Pfeifer ${ }^{\mathrm{b}}$, Dapeng Cao ${ }^{\mathrm{a}}$, Wenjuan Xu^{a}, Juan Song ${ }^{\mathrm{a}}$, Baoxiu $\mathrm{Mi}^{\mathrm{a},{ }^{* *} \text {, }}$ Zhiqiang Gao ${ }^{\text {a }}$, Shaik M. Zakeeruddin ${ }^{\text {b }}$, Wei Huang ${ }^{\text {a, c, }, * * *, ~ M i c h a e l ~ G r a ̈ t z e l ~}{ }^{\text {b, **** }}$

${ }^{\text {a }}$ State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts \& Telecommunications (NJUPT), 9 Wenyuan Road, Nanjing 210023, China
${ }^{\mathrm{b}}$ Laboratory of Photonics and Interfaces (LPI), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
${ }^{c}$ Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China

[^0]

Fig. S1. Calculated absorption spectra of CPPC dyes.
Table S1 Dipole moments of CPPC dyes.

Dye	$\mu_{\text {Tot }}$	μ_{x}	μ_{y}	μ_{z}
CPPC-No	8.8147	2.7759	8.3646	-0.1631
CPPC-Th	9.1231	-6.6880	6.1779	-0.5764
CPPC-Fu	15.3569	-3.4627	14.9611	0.0362
CPPC-Ph	9.1135	4.9464	7.6399	0.4649
CPPC-Py	9.8406	-3.9134	9.0271	-0.1778

Table S2 Photovoltaic parameters of the devices based on CPPC-Fu dyes with different concentrations of LiI.

Batch	LiI (M)	$P_{\text {in }}\left(\mathrm{mW} \mathrm{cm}^{-2}\right)$	$J_{\text {SC }}\left(\mathrm{mA} \mathrm{cm}^{-2}\right)$	$V_{\text {OC }}(\mathrm{mV})$	FF	PCE (\%)	Normalization
1	0	99.9	10.11	783.2	0.803	6.34	0.92
		99.8	9.88	788.3	0.810	6.31	0.92
	0.05	100.1	10.10	777.4	0.811	6.36	0.93
		99.9	10.97	773.9	0.776	6.59	0.96
	0.1	99.9	11.04	763.4	0.773	6.52	0.95
		99.9	10.85	762.3	0.785	6.5	0.95
	0.15	99.8	11.40	735.7	0.777	6.53	0.95
		99.8	10.86	738.4	0.802	6.45	0.94
	0.2	99.8	11.44	750.8	0.79	6.8	0.99
		99.7	11.73	752.3	0.775	6.86	1.00
2	0.2	98.8	12.36	736.7	0.646	5.96	0.98
		98.8	12.50	733.1	0.650	6.07	1.00
	0.4	98.8	13.38	708.4	0.628	6.02	0.99
		98.7	13.15	715.3	0.625	5.96	0.98
	0.6	98.8	12.90	697.6	0.617	5.61	0.92
		98.7	13.70	690.6	0.572	5.48	0.90

		98.7	13.63	687.6	0.557	5.29	0.87
	0.8	98.8	13.58	690.3	0.627	5.95	0.98
	98.7	14.17	667.2	0.586	5.61	0.92	
	98.6	14.23	671.0	0.527	5.10	0.84	

Z960 (1 M DMII, $0.05 \mathrm{M} \mathrm{LiI}, 0.03 \mathrm{M} \mathrm{I}_{2}, 0.5 \mathrm{M} \mathrm{tBP}$ and 0.1 M GNCS in ACN) was used as reference electrolyte during device optimization. The concentrations of the components in Z960 with the exception of LiI were proven to be the optimal in this work. Two batches of devices with different concentrations of LiI were made independently. $0.2 \mathrm{M} \mathrm{LiI} \mathrm{was} \mathrm{selected} \mathrm{based} \mathrm{on} \mathrm{the} \mathrm{normalized} P C E$, four times as much as in $\mathrm{Z} 960(0.05 \mathrm{M} \mathrm{LiI})$. Compared with the devices using Z960, the $V_{\text {OC }}$ and $F F$ were decreased a litter bit, on the contrary, for J_{SC} a big increase was observed.

Fig. S2. Statistical data (a) $P C E$, (b) $F F$, (c) J_{SC} and (d) V_{OC} based on 8 cells for each dye.

Fig. S3. (left) I-V curves measured under different light intensities and (right) current dynamic plots of the DSSCs based on CPPC dyes.

Fig. S4. Light intensity - current density dependence plots of the devices based on CPPC dyes.
Table S3 Photovoltaic parameters of the devices based on CPPC dyes under different light intensities.

Dye	$P_{\text {in }}\left(\mathrm{mW} \mathrm{cm}^{-2}\right)$	$J_{\mathrm{SC}}\left(\mathrm{mA} \mathrm{cm}^{-2}\right)$	$V_{\mathrm{OC}}(\mathrm{mV})$	$F F$	$P C E(\%)$
CPPC-No	100	10.45	748.63	0.81	6.56

	50	5.25	721.83	0.80	5.97
	10	1.06	677.07	0.82	5.90
CPPC-Th	100	11.84	717.49	0.80	7.01
	50	6.23	695.53	0.80	6.80
CPPC-Fu	10	1.22	646.74	0.82	6.47
	100	12.50	731.54	0.80	7.48
	50	6.00	717.52	0.78	6.65
CPPC-Ph	10	1.19	680.86	0.80	6.48
	100	10.17	749.61	0.83	6.52
	10	1.31	719.60	0.83	6.24
	100	50	678.36	0.82	5.84
	50	11.29	708.86	0.82	6.82
	10		669.95	0.81	6.02

Fig. S5. $L H E$ spectra of the dye-grafted TiO_{2} films of CPPC dyes.

Fig. S6. Steady-state photoluminescence spectra of CPPC dyes (a) on TiO_{2} and (b) $\mathrm{Al}_{2} \mathrm{O}_{3}$ films.

Fig. S7. (a) Charge transport lifetime and (b) charge recombination lifetime of the DSSC devices based on CPPC dyes.

Fig. S8. Nyquist plots of the DSSC devices based on CPPC dyes.

Fig. S9. Time dependence of the (a) $P C E, F F$ and (b) $J_{\mathrm{SC}}, V_{\mathrm{OC}}$ of the DSSCs based on CPPC dyes obtained over a period of 1000 h in ambient air at room temperature.

Synthesis

5-(7-(3-(9H-carbazol-9-yl)phenyl)-10-hexyl-10H-phenothiazin-3-yl)thiophene-2-carbaldehyde (3)
A mixture of compound 2 ($602 \mathrm{mg}, 1 \mathrm{mmol}$), (5-formylthiophen-2-yl)boronic acid ($187 \mathrm{mg}, 1.2$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(116 \mathrm{mg}, 0.1 \mathrm{mmol})$ and tetrabutylammonium bromide (TBAB $96.6 \mathrm{mg}, 0.3 \mathrm{mmol}$) in $\mathrm{K}_{2} \mathrm{CO}_{3}$ aqueous solution $(2.5 \mathrm{ml}, 1 \mathrm{M})$ and tetrahydrofuran (THF, 15 mL) was stirred and heated at $85^{\circ} \mathrm{C}$ under a nitrogen atmosphere for 18 h . Water was added to quench the reaction afterwards. The crude product was extracted with DCM and saltwater three times and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure on a rotary evaporator, and the crude product was purified by column chromatography using petroleum ether/dichloromethane ($\mathrm{PE} / \mathrm{DCM}$,

2:1) as the eluent to give compound $\mathbf{3}$ as a yellow solid in a yield of $34 \%(216 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.84(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}$, $1 \mathrm{H}), 7.51(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 8 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{p}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~d}, J=$ $3.6 \mathrm{~Hz}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 181.3,148.1,144.8,143.8$, $142.4,141.1,140.0,138.2,137.1,130.8,129.8,129.3,127.0,126.6,124.7,123.4,122.7,121.4,120.2$, 119.8, 119.1, 118.5, 109.4, 48.7, 31.5, 27.0, 22.7, 14.1. MALDI-TOF (m/z): Anal. Calcd. for $\mathrm{C}_{41} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{OS}_{2}$: 634.2113 , Found: 634.2110 .

5-(7-(3-(9H-carbazol-9-yl)phenyl)-10-hexyl-10H-phenothiazin-3-yl)furan-2-carbaldehyde (4)

A mixture of compound $2(602 \mathrm{mg}, 1 \mathrm{mmol})$, (5-formylfuran-2-yl)boronic acid ($168 \mathrm{mg}, 1.2$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(116 \mathrm{mg}, 0.1 \mathrm{mmol})$ and TBAB $(96.6 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{K}_{2} \mathrm{CO}_{3}$ aqueous solution $(2.5 \mathrm{ml}, 1 \mathrm{M})$ and THF (15 mL) was stirred and heated at $85^{\circ} \mathrm{C}$ under a nitrogen atmosphere for 18 h. Water was added to quench the reaction afterwards. The crude product was extracted with DCM and saltwater three times and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure on a rotary evaporator, and the crude product was purified by column chromatography using $\mathrm{PE} / \mathrm{DCM}(2: 1)$ as the eluent to give compound 4 as a yellow solid in a yield of $80 \%(495 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 8.17$ (d, $\left.J=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.59(\mathrm{~m}, 3 \mathrm{H})$, 7.57-7.50 (m, 2H), 7.49-7.38 (m, 6H), $7.31(\mathrm{t}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.91(\mathrm{dd}, J=18.8,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ $(\mathrm{d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.84(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{dd}, J=6.5,3.7$ $\mathrm{Hz}, 4 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 178.3,159.8,153.2,142.4,143.0,139.7,137.1$, $131.8,130.4,127.3,126.6,122.7,120.4,121.3,119.8,119.2,118.7,116.0,110.0,109.2,48.6,27.3$, 27.0, 22.7, 14.0. MALDI-TOF (m/z): Anal. Calcd. for $\mathrm{C}_{41} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$: 618.2341, Found: 618.2338. 3-(3-(9H-carbazol-9-yl)phenyl)-10-hexyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10Hphenothiazine (5)

A mixture of compound $2(602 \mathrm{mg}, 1 \mathrm{mmol})$, bis(pinacolato)diboron ($506 \mathrm{mg}, 2 \mathrm{mmol}$), KOAc ($294 \mathrm{mg}, 3 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(37 \mathrm{mg}, 0.05 \mathrm{mmol})$ in 1,4-dioxne $(10 \mathrm{~mL})$ was stirred and heated
at $110{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere for 12 h . Water was added to quench the reaction afterwards. The crude product was extracted with DCM and saltwater three times and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure on a rotary evaporator, and the crude product was purified by column chromatography using PE/ethyl acetate (EA, 40:1) as the eluent to give compound 5 as a red solid in a yield of $88 \%(572 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 8.08(\mathrm{dd}$, $J=7.8,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=4.7,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.43-7.27 (m, 7H), 7.25-7.17 (m, 2H), 6.91-6.74 (m, 2H), $3.80(\mathrm{~d}, J=20.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.64-3.51(\mathrm{~m}$, $2 \mathrm{H}), 1.79-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 14 \mathrm{H}), 0.79(\mathrm{dt}, J=8.7,4.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$: $\delta 147.5,144.3,141.3,140.6,140.6,138.0,134.8,134.1,133.4$, $131.2,126.8,125.8,124.6,124.5,123.2,123.2,122.8,121.0,120.5,120.5,116.7,115.7,110.2,84.0$, 84.0, 47.0, 31.3, 31.3, 26.6, 26.2, 26.2, 25.1, 25.1, 22.5, 22.5, 14.3, 14.3. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{BN}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}$: 651.3217; Found: 651.3224.

6-(7-(3-(9H-carbazol-9-yl)phenyl)-10-hexyl-10H-phenothiazin-3-yl)nicotinaldehyde (6)

A mixture of compound 5 ($650 \mathrm{mg}, 1 \mathrm{mmol}$), 2-bromo-5-formylpyridine ($279 \mathrm{mg}, 1.5 \mathrm{mmol}$), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(116 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{TBAB}(96.6 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{K}_{2} \mathrm{CO}_{3}$ aqueous solution ($2.5 \mathrm{ml}, 1$ M) and THF (15 mL) was stirred and heated at $85^{\circ} \mathrm{C}$ under a nitrogen atmosphere for 18 h . Water was added to quench the reaction afterwards. The crude product was extracted with DCM and saltwater three times and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure on a rotary evaporator, and the crude product was purified by column chromatography using $\mathrm{PE} / \mathrm{DCM}(1: 1)$ as the eluent to give compound 6 as a red solid in a yield of $85 \%(534 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (400 MHz, (CD $\left.)_{2} \mathrm{SO}\right): \delta 10.10(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.10(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.31-8.23(\mathrm{~m}, 3 \mathrm{H}), 8.18-$ $8.14(\mathrm{~m}, 1 \mathrm{H}), 8.10-8.05(\mathrm{~m}, 1 \mathrm{H}), 8.01-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.81(\mathrm{~m}, 1 \mathrm{H})$, 7.78-7.72 (m, 1H), 7.67-7.56 (m, 3H), 7.49-7.42 (m, 4H), 7.35-7.28(m, 2H), 7.21-7.13 (m, 2H), 3.98 $(\mathrm{dd}, J=17.4,9.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~d}, J=21.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.84(\mathrm{t}$, $J=4.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, (CD $\left.)_{2} \mathrm{SO}\right): \delta 192.1,159.8,152.4,146.4,143.9,141.4,140.6$, $138.4,137.4,134.2,132.2,131.1,130.4,129.9,127.4,126.8,126.1,125.7,124.5,124.0,123.2,121.0$,
120.5, 119.9, 117.0, 116.1, 110.1, 31.3, 26.3, 22.5, 14.3. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{OS}^{+}: 630.2579$; Found: 630.2579 .

3-(7-(3-(9H-carbazol-9-yl)phenyl)-10-hexyl-10H-phenothiazin-3-yl)-2-cyanoacrylic acid (CPPCNo)

A mixture of compound $\mathbf{1}(552 \mathrm{mg}, 1 \mathrm{mmol})$, cyanoacetic acid ($170 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{OAc}$ ($77 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{COOH}(10 \mathrm{~mL})$ was stirred and heated at $90^{\circ} \mathrm{C}$ under a nitrogen atmosphere for 24 h . Water was added to quench the reaction afterwards. The crude product was extracted with DCM and saltwater three times and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure on a rotary evaporator, and the crude product was purified by column chromatography using methanol $(\mathrm{MeOH}) / \mathrm{DCM}(1: 20)$ as the eluent to give CPPC-No as a crimson solid in a yield of $95 \%(588 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.16(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~s}$, $1 \mathrm{H}), 7.93$ (dd, $J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{tdd}, J=7.9,5.8,2.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.55-$ $7.51(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.36(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, J=8.0,6.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91$ (dd, $J=21.9,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.93-3.87(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{dt}, J=14.8,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 2 \mathrm{H}), 1.37-1.30$ $(\mathrm{m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.1,168.1,154.4,149.6,142.3$, $141.3,140.8,138.3,135.7,132.0,130.4,126.3,126.1,125.8,125.4,125.4,124.9,124.0,123.9,123.8$, 123.7, 123.5, 120.4, 120.1, 116.1, 116.0, 114.9, 109.8, 97.7, 48.2, 31.4, 26.6, 26.5, 22.6, 14.1, 14.0. HRMS (ESI/QTOF) m/z: [M - H $\left.{ }^{+}\right]^{-}$Calcd. for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}^{-}$: 618.2215; Found: 618.2215. 3-(5-(7-(3-(9H-carbazol-9-yl)phenyl)-10-hexyl-10H-phenothiazin-3-yl)thiophen-2-yl)-2cyanoacrylic acid (CPPC-Th)

A mixture of compound $\mathbf{3}(634 \mathrm{mg}, 1 \mathrm{mmol})$, cyanoacetic acid ($170 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{OAc}$ ($77 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{COOH}(10 \mathrm{~mL})$ was stirred and heated at $90^{\circ} \mathrm{C}$ under a nitrogen atmosphere for 24 h . Water was added to quench the reaction afterwards. The crude product was extracted with DCM and saltwater three times and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure on a rotary evaporator, and the crude product was purified by column chromatography using $\mathrm{MeOH} / \mathrm{DCM}(1: 20)$ as the eluent to give CPPC-Th as a crimson solid in a
yield of $93 \%(650 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.97$ (d, $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 6 \mathrm{H})$, 7.48-7.40 (m, 4H), $7.30(\mathrm{ddd}, J=7.9,5.3,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.45-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.19(\mathrm{~m}, 6 \mathrm{H}), 0.82(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$: $\delta 164.1,152.0,145.8,143.9,141.3,140.6,138.0,134.5,134.2,131.2,127.2,126.8,126.4,125.9$, $125.8,124.8,124.7,124.6,124.5,123.7,123.3,121.0,120.5,117.4,116.8,116.7,110.2,47.2,31.6$, 31.3, 30.3, 29.50, 26.6, 26.3, 22.5, 14.3. HRMS (ESI/QTOF) m/z: [M - $\left.\mathrm{H}^{+}\right]^{-}$Calcd. for $\mathrm{C}_{44} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$: 700.2092; Found: 700.2092.

3-(5-(7-(3-(9H-carbazol-9-yl)phenyl)-10-hexyl-10H-phenothiazin-3-yl)furan-2-yl)-2-cyanoacrylic acid (CPPC-Fu)

A mixture of compound 4 ($618 \mathrm{mg}, 1 \mathrm{mmol}$), cyanoacetic acid ($170 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{OAc}$ ($77 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{COOH}\left(10 \mathrm{~mL}\right.$) was stirred and heated at $90^{\circ} \mathrm{C}$ under a nitrogen atmosphere for 24 h . Water was added to quench the reaction afterwards. The crude product was extracted with DCM and saltwater three times and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure on a rotary evaporator, and the crude product was purified by column chromatography using $\mathrm{MeOH} / \mathrm{DCM}(1: 15)$ as the eluent to give $\mathbf{C P F C - F u}$ as a crimson solid in a yield of $91 \%(620 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 8.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.89$ $(\mathrm{s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{dd}, J=16.3,9.5 \mathrm{~Hz}, 2 \mathrm{H})$, 4.06-3.87 (m, 2H), 1.79-1.62 (m, 2H), 1.34-1.24 (m, 6H), $0.82(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 164.5,158.8,147.7,146.0,143.9,141.3,140.6,138.0,137.9,134.3,131.2,127.5$, $126.8,125.9,125.8,125.3,124.6,124.2,123.9,123.6,123.3,123.3,121.0,120.5,117.2,116.9,116.6$, $110.2,109.6,96.8,47.3,32.0,31.8,31.3,29.9,29.5,29.2,26.8,26.6,26.2,22.5,14.4,14.3$. HRMS (ESI/QTOF) m/z: $\left[\mathrm{M} \mathrm{-} \mathrm{H}^{+}\right]^{-}$Calcd. for $\mathrm{C}_{44} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{-}: 684.2321$; Found: 684.2321 .

3-(6-(7-(3-(9H-carbazol-9-yl)phenyl)-10-hexyl-10H-phenothiazin-3-yl)pyridin-3-yl)-2-cyanoacrylic acid (CPPC-Py)

A mixture of compound $6(629 \mathrm{mg}, 1 \mathrm{mmol})$, cyanoacetic acid ($170 \mathrm{mg}, 2 \mathrm{mmol}$) and $\mathrm{NH}_{4} \mathrm{OAc}$ ($77 \mathrm{mg}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{COOH}\left(15 \mathrm{~mL}\right.$) was stirred and heated at $85^{\circ} \mathrm{C}$ under a nitrogen atmosphere for 20 h . Water was added to quench the reaction afterwards. The crude product was extracted with DCM and saltwater three times and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure on a rotary evaporator, and the crude product was purified by column chromatography using $\mathrm{MeOH} / \mathrm{DCM}(1: 20)$ as the eluent to give CPFC-Py as a red solid in a yield of $86 \%(599 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 8.94(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.46-8.37(\mathrm{~m}, 1 \mathrm{H}), 8.28$ (dd, $J=7.8,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.11-8.06(\mathrm{~m}, 1 \mathrm{H}), 8.05-7.97(\mathrm{~m}, 2 \mathrm{H}), 7.97-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.27(\mathrm{~m}$, $2 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.92(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 2 \mathrm{H}), 1.33-1.20(\mathrm{~m}, 4 \mathrm{H})$, $0.90-0.76(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 156.5,151.7,146.2,144.1,141.3,140.6,138.0$, $136.5,134.1,132.3,131.2,126.8,125.8,124.6,124.5,124.0,123.8,123.2,121.0,120.5,119.6,116.3$, 110.2, 31.3, 26.6, 26.3, 22.5, 14.3. HRMS (ESI/QTOF) m/z: $\left[\mathrm{M}-\mathrm{H}^{+}\right]^{-}$Calcd. for $\mathrm{C}_{45} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}^{-}$: 695.2481; Found 695.2480.

Fig. S10. (a) ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}, (b) ${ }^{13} \mathrm{C}$ NMR in CDCl_{3} and (c) HRMS of CPPC-No.

200826_|pi_jiao_CPPC-Th_f06a03fd47 (0.045) Is $(1.00,0.10)$ C44H35N3O2S2 1: TOF MS ES-

Fig. S11. (a) ${ }^{1} \mathrm{H}$ NMR in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$, (b) ${ }^{13} \mathrm{C}$ NMR in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ and (c) HRMS of CPPC-Th.

Fig. S12. (a) ${ }^{1} \mathrm{H}$ NMR in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$, (b) ${ }^{13} \mathrm{C}$ NMR in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ and (c) HRMS of CPPC-Fu.

| 6 | | | | | | | | | | | | | | | | |
| :--- |
| 60 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

CPC-Py

Fig. S13. (a) ${ }^{1} \mathrm{H}$ NMR in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$, (b) ${ }^{13} \mathrm{C}$ NMR in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ and (c) HRMS of CPPC-Py.

[^0]: * E-mail: zhongjin.shen@epfl.ch
 ${ }^{* *}$ E-mail: iambxmi@njupt.edu.cn
 *** E-mail: wei-huang@njtech.edu.cn
 ${ }^{* * * *}$ E-mail: michael.graetzel@epfl.ch

