Supporting Information

Visible-Light-Driven Hydrogen Peroxide Production from Water and Dioxygen by Perylenetetracarboxylic Diimides Modified Titanium-Based Metal–Organic Frameworks

Xiaolang Chen,^{a†} Yoshifumi Kondo,^{a†} Shuangjun Li,^b Yasutaka Kuwahara,^{acd} Kohsuke Mori,^{ac} Dieqing Zhang,^b Catherine Louis,^e and Hiromi Yamashita*^{ac}

[†]These authors contributed equally to this work.

- a. Graduate School of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565–0871, Japan. *E-mail: <u>yamashita@mat.eng.osaka-u.ac.jp</u>
- b. The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai,200234, China
- c. Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615–8520, Japan.
- d. JST, PRESTO, 4–1–8 Honcho, Kawaguchi, Saitama 332–0012, Japan.
- e. Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7197, Laboratoire de Réactivité de Surface, 4 Place Jussieu, Tour 43–33, 3ème étage, Case 178, F-75252 Paris, France.

Electrochemical measurements

Electrode preparation

25 mg of catalyst and 5 mg of Polyethylene glycol were dispersed in 200 μ L EtOH, then grinded and mixed evenly. The as-prepared slurry was dropped on FTO with an active area of ca. 1.0 cm² (1.0 * 1.0 cm) to achieve a uniform coverage with thickness of about 50 μ m, and then dried at 200 °C for 2 h. All electrodes were prepared through the same process.

Electrochemical measurements

The photocurrents and electrochemical impedance spectroscopy (EIS) measurements were performed on an electrochemical station (CHI760E) with a traditional three electrode system in a single-compartment quartz cell. The Ag/AgCl and platinum sheet were the reference electrode and counter electrode, respectively. Samples with an active area of ca. 1.0 cm² (1.0 *1.0 cm) on an FTO glass were served as working electrode. Na₂SO₄ (0.5 M) aqueous solution was used as the electrolyte. A bias voltage (0.50 V) was used for driving the photo-generated electron-transfer. A 300 W Xe lamp with an ultraviolet filter ($\lambda > 420$ nm) was used as the visible light source and positioned 10 cm away from the photoelectrochemical cell. The EIS tests were carried out at the open-circuit voltage of 0.3 V and recorded over a frequency ranged from 0.01 to 1*10⁵ Hz with an amplitude at 5 mV.

Fitted time-resolved PL results

Table S1. Time-resolved PL results.

Samples	$ au_1$	$ au_2$	B ₁ %	B ₂ %	$\tau_{av.}$	χ^2
MIL-125-NH ₂	1.15	19.79	35.27	64.73	19.22	1.21
MIL-125-PDI	0.82	9.12	43.08	56.92	8.59	1.28

The fitting process was conducted on the professional software provide by the instrument, and the fitting quality was judged by the factor χ^2 . After fitting, we take the Rel% as the "B%" to calculate the average decay lifetime ($\tau_{av.}$). The data was fitted with using following multiple exponential formulas (1). The $\tau_{av.}$ was calculated by the formula (2).

$$R(t) = B_1 e^{\frac{-t}{\tau_1}} + B_2 e^{\frac{-t}{\tau_2}} + B_3 e^{\frac{-t}{\tau_3}} + \dots \dots (1)$$
$$\tau_{av.} = \frac{B_1 \% \times \tau_1^2 + B_2 \% \times \tau_2^2 + B_3 \% \times \tau_3^2}{B_1 \% \times \tau_1 + B_2 \% \times \tau_2 + B_3 \% \times \tau_3} \dots \dots (2)$$

Calculation of apparent quantum efficiency (AQY)

By assuming a two-electron reduction of O2, the AQY was calculated as:

$$AQY = \frac{2 \times (molecule \ number \ of \ H2O2)}{incident \ photon \ number} \times 100\% \cdots (3)$$

 H_2O_2 molecule number = $C[H_2O_2] \times V_{solution} \times N_A$, $C[H_2O_2]$ is the H_2O_2 concentration, $V_{solution}$ is the solution volume (5 mL), N_A is the Avogadro number (6.02 × 10²³ mol⁻¹).

$$N = I \times A \times t / hv = I \times A \times t \times \lambda / (hc) = \int_{\lambda_1}^{\lambda_2} \frac{IAt}{hc} d\lambda \cdots (4)$$

Incident photon number (N):

I is the light intensity (0.305 J·s⁻¹·cm⁻²). *A* is the incident area (~1.767 cm²), *t* is the reaction time (4.5 h = 16200 s), λ is the light wavelength (λ_1 - λ_2): 400, 420, and 450–1100 nm for Xe lamp with a light filter, *h* is the Planck constant (6.626 ×10⁻³⁴ J·s), and *c* is the light speed (3.0 × 10¹⁷ nm·s⁻¹).

Fig. S1 XRD patterns of Pt/MIL-125-NH₂.

Due to the very small size of Pt nanoparticles, XRD peaks of Pt cannot be observed clearly.

Fig. S2 UV–Vis DRS of Pt/MIL-125-NH₂.

Fig. S3 Promotion effect of Pt on the H_2O_2 production and decomposition using Pt/MIL-125-NH₂.

Fig. S4 Results of the recycling test using MIL-125-PDI as a photocatalyst. Reaction conditions: 10 mg of photocatalysts, 1 mL of H₂O, 9 mL of CH₃CN, $\lambda > 420$ nm, O₂: 15 min, 20 mL/min.

Fig. S5 XRD patterns of MIL-125-PDI before and after five cycles.

Fig. S6 FT-IR of MIL-125-PDI before and after five cycles.

Fig. S7 XPS spectra: N 1s of MIL-125-PDI before and after five cycles.

Fig. S8 UV–Vis DRS of MIL-125-PDI before and after five cycles.

Fig. S9 (a) N_2 adsorption/desorption isotherms and (b) pore distribution of MIL-125-PDI before and after five cycles.

Table S2. Structural parameters of the MIL-125-PDI before and after five cycles.

Samples	$S_{BET} (cm^2 \bullet g^{-1})^a$	$D_p (nm)^b$	$V_p (cm^3 \bullet g^{-1})^c$
MIL-125-PDI	527	0.65	0.28
After five cycles	278	0.65	0.13

^aSurface area (S_{BET}) calculated by the BET method. ^bAverage pore diameter (D_p) calculated using the Saito Foley (SF) method. ^cPore volume (V_p) calculated using the SF method.

Photocatalysts	Reaction system (catalyst/solution)	Light	Activity (μM • g ⁻¹ • h ⁻¹)	Ref.
BM-Au/TiO ₂	10 mg/10 mL	$\lambda > 430 \text{ nm}$	3500	1
CdS-graphene	50 mg/50 mL	$\lambda > 420 \text{ nm}$	213	2
g-C ₃ N ₄	50 mg/30 mL	$\lambda > 420 \text{ nm}$	< 2.8	3
g-C ₃ N ₄ /PDI ₅₁	50 mg/30 mL	$\lambda > 420 \text{ nm}$	703	3
C-N-g-C ₃ N ₄	20 mg/15 mL	$420 \text{ nm} \le \lambda \le 700 \text{ nm}$	3367	4
Cu-doped g-C ₃ N ₄	200 mg/200 mL	$\lambda > 400 \text{ nm}$	1333	5
Resins	50 mg/30 mL	$\lambda > 420 \text{ nm}$	2750	6
Graphene oxide	320 mg/L	$\lambda \ge 420 \text{ nm}$	104.2	7
MIL-125-NH ₂ (This work)	5 mg/5 mL	$\lambda > 420 \text{ nm}$	1111	_
MIL-125-PDI (This work)	5 mg/5 mL	$\lambda > 420 \text{ nm}$	4800	_

Table S3. Activity comparison of the photocatalytic H_2O_2 production from O_2 and H_2O with different type of photocatalysts.

References

- 1. M. Teranishi, R. Hoshino, S.-i. Naya and H. Tada, Angew. Chem. Int. Ed., 2016, 55, 12773–12777.
- 2. S. Thakur, T. Kshetri, N. H. Kim and J. H. Lee, J. Catal., 2017, 345, 78–86.
- Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka and T. Hirai, *Angew. Chem. Int. Ed.*, 2014, 53, 13454–13459.
- Y. Fu, C. a. Liu, M. Zhang, C. Zhu, H. Li, H. Wang, Y. Song, H. Huang, Y. Liu and Z. Kang, Adv. Energy Mater., 2018, 8, 1802525.
- S. Hu, X. Qu, P. Li, F. Wang, Q. Li, L. Song, Y. Zhao and X. Kang, *Chem. Eng. J.*, 2018, **334**, 410–418.
- Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji, Y. Kitagawa, S. Tanaka, S. Ichikawa and T. Hirai, *Nat. Mater.*, 2019, 18, 985–993.
- 7. W.-C. Hou and Y.-S. Wang, ACS Sustain. Chem. Eng., 2017, 5, 2994–3001.