Supporting Information

Phase and Interface Engineering of Nickel Carbide Nanobranches for Efficient Hydrogen Oxidation Catalysis

Wangjin Ji,†^a Changhong Zhan,†^b Deyu Li,†^c Yong Xu,*^d Ying Zhang,^b Lu Wang,*^c Liangbin Liu,^b Yu Wang,^e Wenxing Chen,^f Hongbo Geng,*^a Xiaoqing Huang*^b

*yongxu@gdut.edu.cn, lwang22@suda.edu.cn, genghonhbo@126.com, hxq006@xmu.edu.cn

Figure S1. XRD patterns of Ni₃C/C after annealed at different temperatures in 5 % H_2/Ar .

Figure S2. TEM images of Ni₃C/C after annealing at (a) 200 °C, (b) 250 °C, (c) 300 °C, and (d) 400 °C in 5 % H₂/Ar.

Figure S3. XPS spectra of (a) $Ni_3C/C-250$ and (b) $Ni_3C/C-300$.

Figure S4. HOR polarization curves of $Ni_3C/C-350$ in H_2 -saturated 0.1 M KOH at a rotating speed of 1600 rpm with different scan speeds.

E /V vs.RHE Figure S5. HOR polarization curves of Ni₃C/C-250 and Ni₃C/C-300 in H₂-saturated 0.1 M KOH at a rotating speed of 1600 rpm.

Figure S6. CV curves of different catalysts. (a) ECSA for Ni₃C/C-200 (10.58 cm², catalyst loading: 0.2 mg/cm²), (b) ECSA for Ni₃C/C-250 (9.57 cm², catalyst loading: 0.2 mg/cm²), (c) ECSA for Ni₃C/C-300 (9.11 cm², catalyst loading: 0.2 mg/cm²), (d) ECSA for Ni₃C/C-350 (7.72 cm², catalyst loading: 0.2 mg/cm²), and (e) ECSA for Ni₃C/C-400 (5.05 cm², catalyst loading: 0.2 mg/cm²).

Figure S7. Anodic LSV scans in 0.1 M Ar-saturated KOH electrolyte showing the OH_{ads} oxidative adsorption peaks (scan rate: 50 mV·s⁻¹) of Ni₃C/C-200, Ni₃C/C-350 and Ni₃C/C-400.

Figure S8. Surface valence band photoemission spectra of $Ni_3C/C-200$, $Ni_3C/C-350$ and $Ni_3C/C-400$.

Figure S9. XRD patterns of of Ni/C, Ni₃C/C and Ni₃C/C-350.

Figure S10. XPS spectra of Ni_3C/C , Ni_3C/C -350 and Ni/C.

Figure S11. HOR polarization curves of Ni/C, Ni₃C/C and Ni₃C/C-350 in H₂-saturated 0.1 M KOH at a rotating speed of 1600 rpm.

Figure S12. Relative current-time chronoamperometry response of $Ni_3C/C-350$ at 0.05 V versus RHE.

Figure S13. The polarization curves of Pt/C colleted with and without 1000 ppm CO. The scan rate is 1 mV/s and the rotation speed is 1600 rpm.

Figure S14. (a) XRD pattern, (b) TEM image, (c) XPS spectrum and (d) HRTEM of the spent Ni_3C/C -350 after long-term durability test.

	Table S	1. The	ratio o	f Ni⁰:Ni²	+obtained	from	XPS	fitting.
--	---------	--------	---------	-----------	-----------	------	-----	----------

Samples	Ni ₃ C/C-200	Ni ₃ C/C-250	Ni ₃ C/C-300	Ni ₃ C/C-350	Ni ₃ C/C-400
Ni ⁰ :Ni ²⁺	0.17	0.29	0.45	0.49	1.17

Sample	Path	CN	R(Å)	$\sigma^{2}(\times 10^{-3}\text{\AA}^{2})$	$\triangle E_0(eV)$	R factor
Ni foil	Ni-Ni	12	2.48 ± 0.01	6.0±0.2	5.6±0.4	0.002
NF C/C 200	C-Ni		1.79 ± 0.03	10.6±7	-8.3 ± 4.7	0.005
$N_{3}C/C-200$	Ni-Ni	6.3±1.4	2.60 ± 0.02	12.5 ± 2.0	1.5 ± 1.8	0.003
Ni ₃ C/C-350	C-Ni	1.6 ± 1.5	1.78 ± 0.04	6.3±1.9	7.6±1.4	0.005
	Ni-Ni	8.5±2.2	2.51 ± 0.03	9.2 ± 2.7	5.8 ± 2.3	0.005
Ni ₃ C/C-400	Ni-Ni	8.7±0.1	2.48 ± 0.05	4.3±0.5	6.2 ± 0.9	0.009

Table S2. Results from EXAFS fitting.

Catalyst	Loading	Rotating	j ^k	j^0	\dot{J}^0 ecas	Ref.
	(mg cm ⁻	Speed (rpm)	(mA	(mA	$(mA cm^{-2})$	
	²)		cm ⁻²)	cm ⁻²)		
Ni ₃ C/C-350	0.2	1600	2/72	0.96	0.031	This work
Ni ₃ C/C-400	0.2	1600	2.18	0.81	0.031	This work
Ni/N-CNT	0.25	2500	2.33	0.8857	0.028	Nat. Commun., 2016, 7, 10141.
CeO ₂ (r)- Ni/C-1	0.141	2500	1.73	1.07	0.038	Angew. Chem. Int. Ed., 2019, 58 , 14179.
Ni ₄ Mo	0.5	1600	33.8	3.41	0.065	Nat. Commun., 2020, 11, 4789
Ni ₄ Mo	0.2	1600	10.72	2.82	-	Angew. Chem. Int. Ed., 2021, 60 , 5771
Ni-H ₂ -2%	0.116	2500	5.85	2.9	0.028	Angew. Chem. Int. Ed., 2020, 59 , 10797.
np-Ni ₃ N	0.16	1600	4.76	1.65	-	Energy Environ. Sci., 2019, 12 , 3522.
Ni ₃ N/C	0.16	2500	3.90	1.89	0.014	Angew. Chem. Int. Ed., 2020, 58 , 7745
Ni/NiO/C- 700	0.32	1600	1.59	-	0.026	Angew. Chem. Int. Ed., 2019, 58 , 10644.
Ni ₉ Mo ₁ /KB	0.1	1600	-	-	0.027	J. Mater. Chem. A, 2017, 5 , 24433.
Ni ₉₅ Cu ₅ /KB	0.1	1600	-	-	0.025	Sustain. Energy Fuels, 2018, 2 , 2268.
NiB-300	0.142	2500	-	-	0.026	Chem. Sci., 2020, 11, 12118
Ni ₃ @BN/C	0.25	2500	-	0.84	0.023	Chem. Sci., 2017, 8, 5728

Table S3. Comparison of Ni₃C/C-350 and the reported catalysts for HOR in 0.1 M KOH.