

Electronic Supplementary Information

Supporting Cu@In₂O₃ Core-Shell Structure on N-Doped Graphitic Carbon Cuboctahedra Cages for Efficient Photocatalytic Homo-Coupling of Terminal Alkynes

Yaya Yuan,^{†a} Ya-Qun Wang,^{†a} Guilin Zhuang,^{†b} Qiuyan Li,^a Feng-Lei Yang,^{*a} Xiaojun Wang,^a Xiguang Han^{*a}

^a Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou, 221116 (P. R. China) E-mail: yangfl@jsnu.edu.cn; xghan@jsnu.edu.cn

^b Laboratory of Molecular Catalysis & Computational Materials, Zhejiang University of Technology, Shanghai (P. R. China)

[†] These authors contributed equally

Contents

1. Experiment Section	S3
1.1 Synthesis of Cu-MOF-199 (HKUST-1) precursors	S3
1.2 Synthesis of In-HKUST-1	S3
1.3 Synthesis of Cu/In ₂ O ₃ @N-C Nanocomposites	S3
1.4 Synthesis of Cu@N-C Nanocomposites	S3
1.5 Synthesis of Cu/In ₂ O ₃ Nanocomposites	S3
1.6 Synthesis of In ₂ O ₃ @N-C Nanosheets	S3
1.7 Characterization	S4
1.8 Photoelectrochemical measurements	S4
1.9 Photocatalytic reactions.....	S4
2. Experiment Results	S5
Fig. S1. (a) XRD pattern of the HKUST-1, (b) SEM image of the as-obtained HKUST-1, (c-f) EDX elemental mapping of Cu, O, C, N.....	S5
Fig. S2. (a) XRD pattern of the In-HKUST-1, (b,c) SEM image of the as-obtained In-HKUST-1, (d-h) the corresponding EDX elemental mapping of Cu, In, O, C, N.....	S6
Fig. S3. TGA curves of the as-obtained In-HKUST-1 precursor	S7
Fig. S4. The corresponding selected-area electron diffraction (SAED) of Cu/In ₂ O ₃ @N-C.....	S8
Fig. S5. (a) XRD pattern of Cu/In ₂ O ₃ @N-C, (b) Raman spectrum of Cu/In ₂ O ₃ @N-C irradiated by 532 nm wavelength, (c) surface adsorption curve of Cu/In ₂ O ₃ @N-C (inset: pore size distribution).....	S9
Fig. S6. Auger Cu LMM peak of Cu/In ₂ O ₃ @N-C nanocomposites.....	S10
Fig. S7. (a) Typical XRD pattern of Cu/N-C, (b) SEM image of Cu/N-C, (c-f) corresponding elemental mapping.....	S11
Fig. S8. (a) Typical XRD pattern of Cu/In ₂ O ₃ , (b) SEM image of Cu/In ₂ O ₃ , (c-h) corresponding elemental mapping.....	S12
Fig. S9. XRD pattern of MOF precursor of In ₂ O ₃ @N-C (In-MOF).....	S13

Fig. S10. (a) Typical XRD pattern of $\text{In}_2\text{O}_3@\text{N-C}$, (b) SEM image of $\text{In}_2\text{O}_3@\text{N-C}$, (c-h) corresponding elemental mapping.	S13
The calculation equation of the product yield:.....	S14
Fig. S11. ^1H NMR spectrum of the product of homo-coupling of terminal alkynes for the four catalysts (a) $\text{Cu}/\text{In}_2\text{O}_3@\text{N-C}$ (b) $\text{Cu}@\text{N-C}$ (c) $\text{Cu}/\text{In}_2\text{O}_3$ (d) $\text{In}_2\text{O}_3@\text{N-C}$	S14
Fig. S12. Turnover frequency (TOF) graph of four catalysts.	S16
Fig. S13. Characterizations of $\text{Cu}/\text{In}_2\text{O}_3@\text{N-C}$ after catalytic reaction (a) XRD pattern, (b) SEM image, (c) SEM image of single particle, (d-h) corresponding elemental mapping.	S17
Fig. S14. Comparison of XRD pattern before and after catalytic reaction.	S18
Fig. S15. Comparison of the photocatalytic efficiency of for aerobic oxidative coupling reaction of phenylacetylene under different wavelength of light.	S19
Literature survey	S20
Table S1 The reported catalytic conditions for homo-coupling of terminal alkynes.	S20
3. Computational Details	S22
Fig. S16. Total density of states of $\text{Cu}/\text{In}_2\text{O}_3$ with the charge density of VBM and CBM.....	S23
Fig. S17. Partial density of states of $\text{Cu}/\text{In}_2\text{O}_3$	S23
Fig. S18. Adsorption structure of phenylacetylene on $\text{Cu}/\text{In}_2\text{O}_3$ with two side view.....	S24
4. References	S25

1.Experiment Section

1.1 Synthesis of Cu-MOF-199 (HKUST-1)precursors

First, $\text{Cu}(\text{NO}_3)_2 \cdot 3\text{H}_2\text{O}$ (0.024 g, 0.1 mmol) was dissolved in the mixed-solvent of 4.5 mL ethanol and 4.5 mL N,N-dimethylformamide (DMF) to obtain solution (a). Then, benzimidazole (0.201g, 1.7 mmol) was added to the same mixed-solvent (4.5 mL ethanol and 4.5 mL DMF) to obtain solution (b). Solution (b) was added to solution (a) to form the bright blue solution (c), which was agitated for 10 min. 1,3,5-Benzenetricarboxylic acid (0.021 g, 0.1 mmol) was added to the mixed-solvent of 9 mL ethanol and 9 mL DMF to obtain solution (d). Solution (d) was added to solution (c) and agitated for 6 h at 90 °C. Finally, HKUST-1 was obtained by centrifuging, washing three times with anhydrous ethanol, and drying at 60 °C in an oven.

1.2 Synthesis of In-HKUST-1

In a typical synthesis, HKUST-1 (0.01 g), thiocarbamide (0.009 g, 0.12 mmol) and $\text{In}(\text{NO}_3)_3 \cdot 4\text{H}_2\text{O}$ (0.0186 g, 0.05 mmol) were dissolved in 5 mL DMF. The mixed solution was then transferred into a Teflon-lined stainless steel autoclave and heated at 120°C for 4 h. After the reaction, the product was collected by centrifugation, washed several times with anhydrous ethanol, and dried at 60°C in an oven.

1.3 Synthesis of Cu/ In_2O_3 @N-C Nanocomposites

$\text{Cu}/\text{In}_2\text{O}_3$ @N-C nanoparticles were synthesized via calcination of the obtained In-HKUST-1 at 500 °C for 0.5 h in vacuum atmosphere with heating rate of 5 °C·min⁻¹.

1.4 Synthesis of Cu@N-C Nanocomposites

Calcination of HKUST-1 at 500 °C for 0.5 h in vacuum atmosphere with heating rate of 5 °C·min⁻¹.

1.5 Synthesis of Cu/ In_2O_3 Nanocomposites

In-HKUST-1 were calcined at 500 °C for 2 h in oxygen atmosphere with heating rate of 2 °C·min⁻¹. Then, Cu/ In_2O_3 nanoparticles were synthesized via calcination for 4 h at 350 °C in H_2/Ar ($\text{H}_2/\text{Ar}=10\%$) atmosphere.

1.6 Synthesis of In_2O_3 @N-C Nanosheets

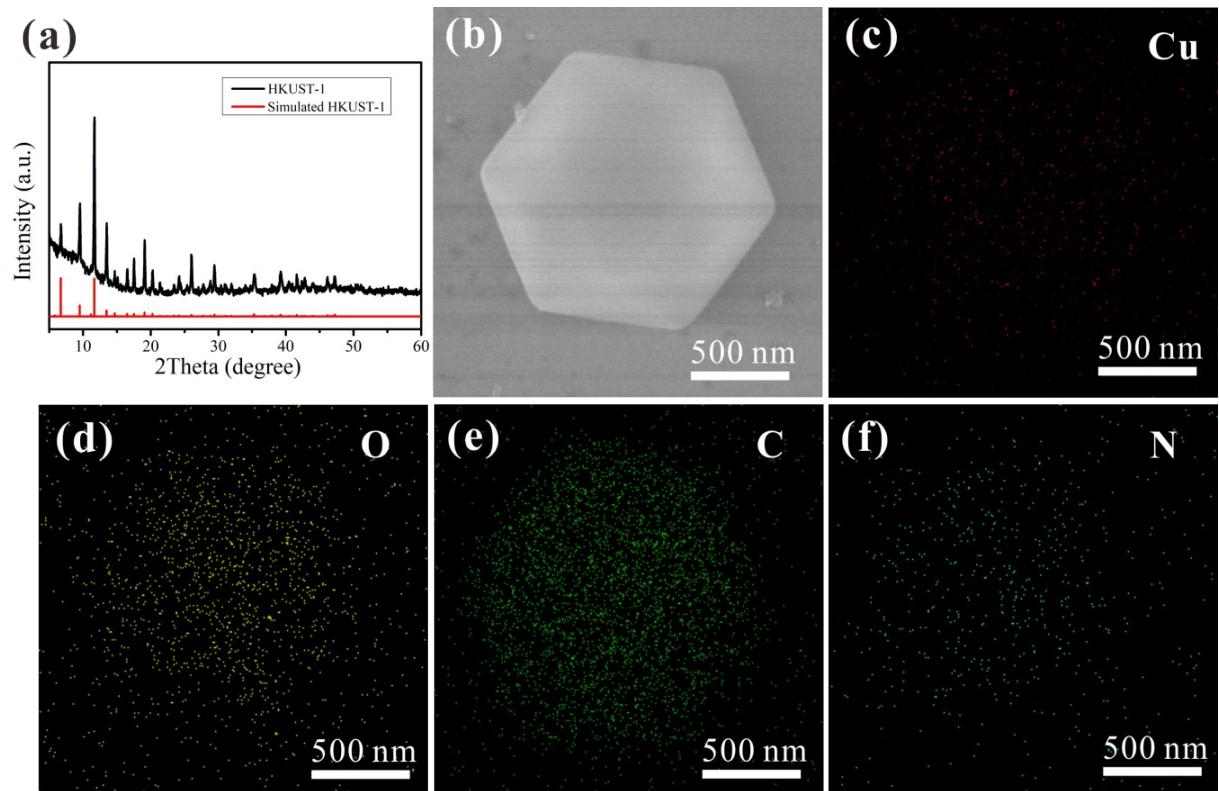
First, $\text{In}(\text{NO}_3)_3 \cdot 4\text{H}_2\text{O}$ (0.0186 g, 0.05 mmol), 1,3,5-Benzenetricarboxylic acid (0.021 g, 0.1 mmol) and benzimidazole (0.20 g, 1.7 mmol) were dissolved in 5 mL DMF agitated for 4 h at 120 °C. The product(In-MOF) was collected by centrifugation, washed several times with anhydrous ethanol, and dried at 60 °C. Then, In_2O_3 @N-C nanosheets were synthesized via calcination of the product at 450 °C for 0.5 h in Ar atmosphere with heating rate of 5 °C·min⁻¹.

1.7 Characterization

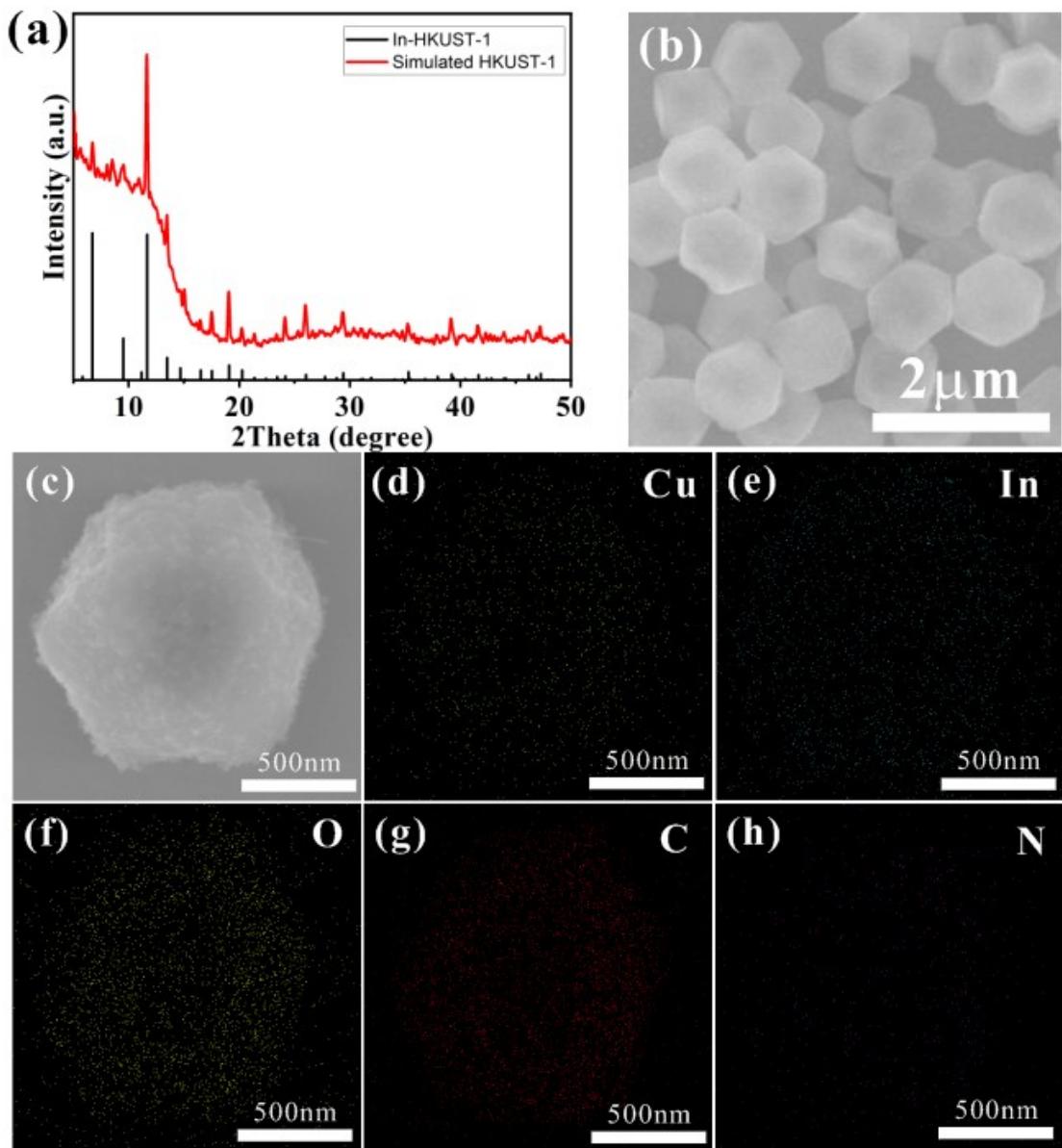
The composition and phase of the as-prepared products were acquired by the powder X-ray diffraction (XRD) pattern using a Panalytical X-pert diffractometer with CuK α radiation. The morphology and crystal structure of as-prepared products were observed by scanning electron microscopy (SEM, SU8010), and high-resolution transmission electron microscopy (HRTEM, FEI Tecnai-F20) with an acceleration voltage of 200 kV. All TEM samples were prepared from depositing a drop of diluted suspensions in ethanol on a carbon film coated copper grid. PHI QUANTUM2000 photoelectron spectrometer (XPS) was used to characterize the surface compositions of product. The surface areas of these samples were measured by the Brunauer-Emmett-Teller (BET) method using nitrogen adsorption and desorption isotherms on a Micrometrics ASAP 2020 system. Thermogravimetric analysis (TGA) was carried on a TGA-Q50 thermoanalyzer with a heating rate of 10 $^{\circ}\text{C}\cdot\text{min}^{-1}$ under nitrogen atmosphere. Raman spectroscopy was measured using a Renishaw inVia 2000 Raman spectrometer and 532 nm excitation wavelength. The photoluminescence (PL) spectra was performed with an excitation wavelength of 250 nm.

1.8 Photoelectrochemical measurements

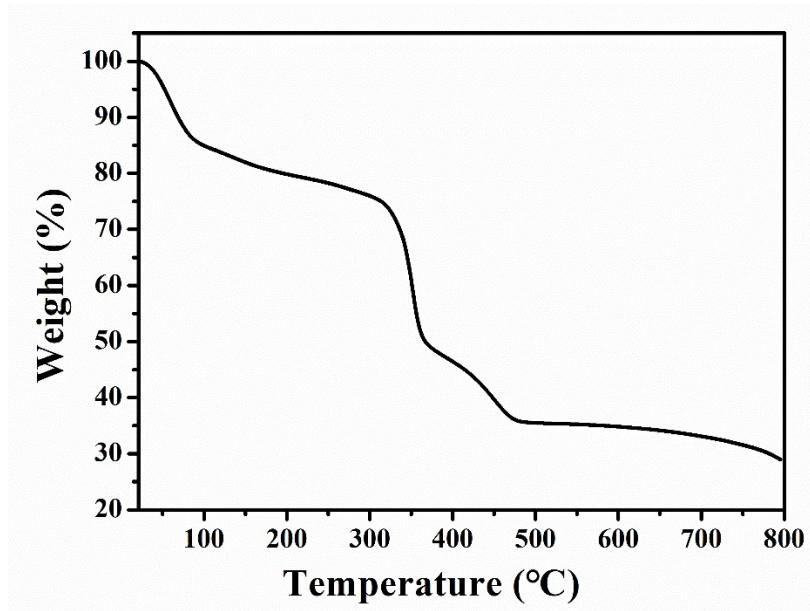
Photoelectrochemical experiments were measured in the three electrode quartz cell. The Pt plate was selected as the counter electrode, the reference electrode was Hg/HgCl₂ electrode, and the corresponding working electrode was obtained on the fluorine doped tin oxide (FTO) glass. In order to obtain a slurry, the obtained product (3 mg) was ultrasonicated in ethanol (0.1 mL). The slurry was then spread onto the FTO glass. The obtained working electrode with the area about 2.5 cm² was dried at 200 $^{\circ}\text{C}$ for 120 min. The CHI-760E workstation was used to measure the Electrochemical impedance spectra (EIS). In the three-electrode cell, the 0.025 M KH₂PO₄ and 0.025 M Na₂HPO₄ standard buffer solution (25 $^{\circ}\text{C}$, pH=6.864) were selected as the electrolytes without adding any additive, and the measurements were performed on an open circuit potential condition. A 300 W Xe arc lamp system was used as the visible-light irradiation source. The linear sweep voltammetry (LSV) voltage was controlled in the range of -0.8~0.2 V, and the scanning speed was 0.01 V·s⁻¹. The photocurrent densities were measured under a potential of 0.3V.


1.9 Photocatalytic reactions

The catalyst (5 mg) and phenylacetylene (0.1mmol) were respectively added to acetonitrile (3 mL). The solution mixture was stirred and irradiated by blue LEDs (532 nm, 3 W) under air at room temperature. The yield of the product was characterized by ¹H NMR spectra. To perform the recycling experiments, the photocatalyst was recovered by centrifugation and washed with anhydrous ethanol for several times and then dried at 60°C in an oven.



2. Experiment Results


Fig. S1. (a) XRD pattern of the HKUST-1, (b) SEM image of the as-obtained HKUST-1,(c-f) EDX elemental mapping of Cu, O, C, N.

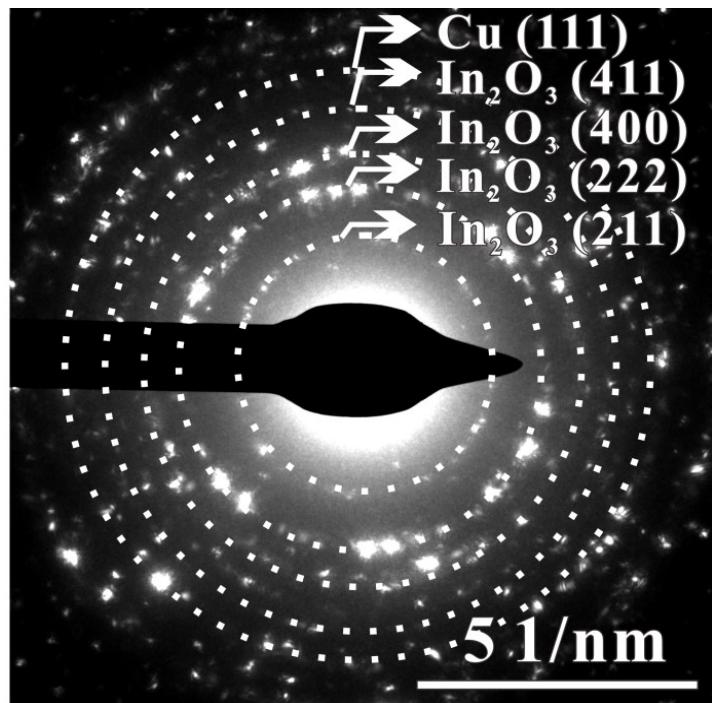

Fig. S2. (a) XRD pattern of the In-HKUST-1, (b,c)SEM image of the as-obtained In-HKUST-1, (d-h) the corresponding EDX elemental mapping of Cu, In, O, C, N.

Fig. S3. TGA curves of the as-obtained In-HKUST-1 precursor.

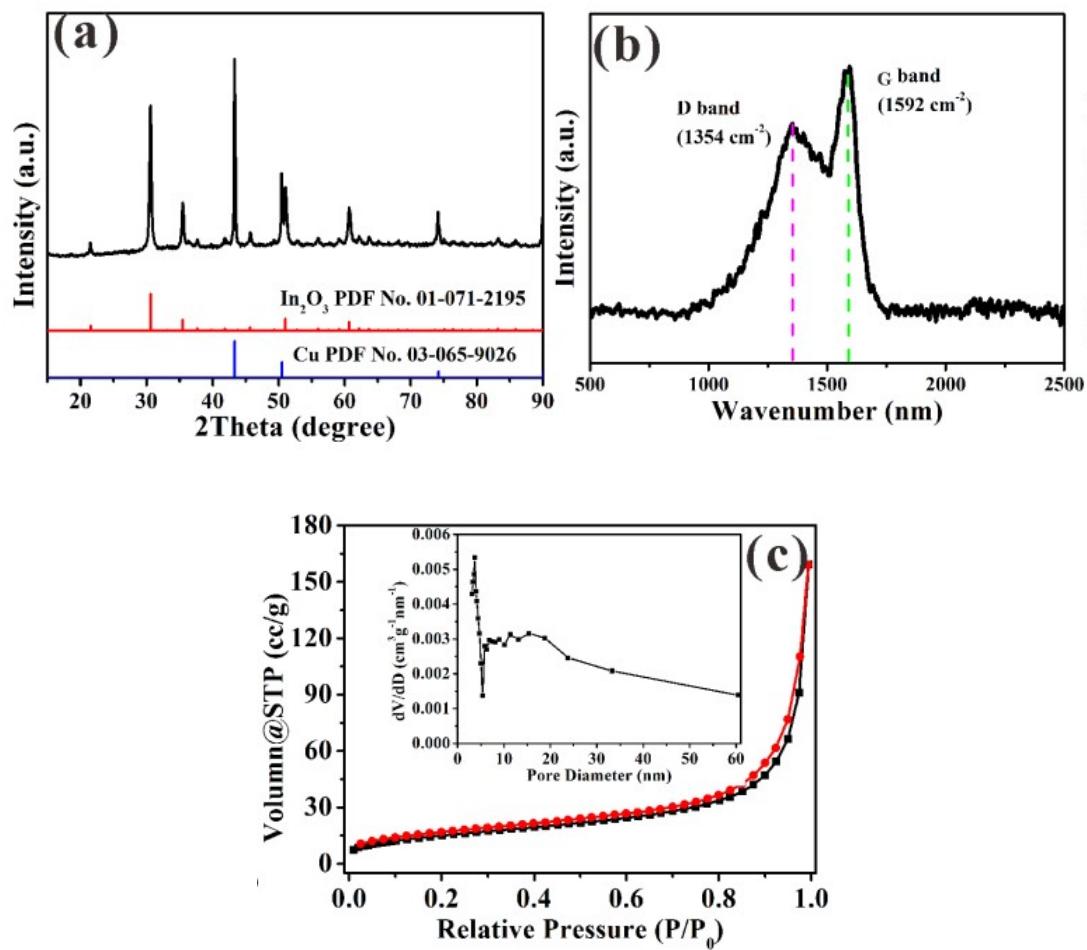


Fig. S4.The corresponding selected-area electron diffraction (SAED) of Cu/In₂O₃@N-C.

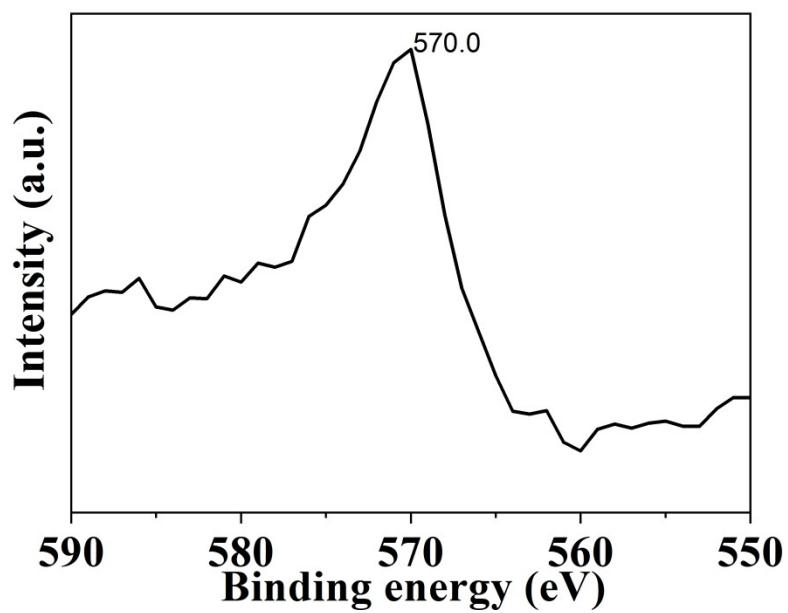


Fig. S5. (a) XRD pattern of Cu/In₂O₃@N-C, (b) Raman spectrum of Cu/In₂O₃@N-C

irradiated by 532 nm wavelength, (c) surface adsorption curve of Cu/In₂O₃@N-C (inset: pore size distribution).

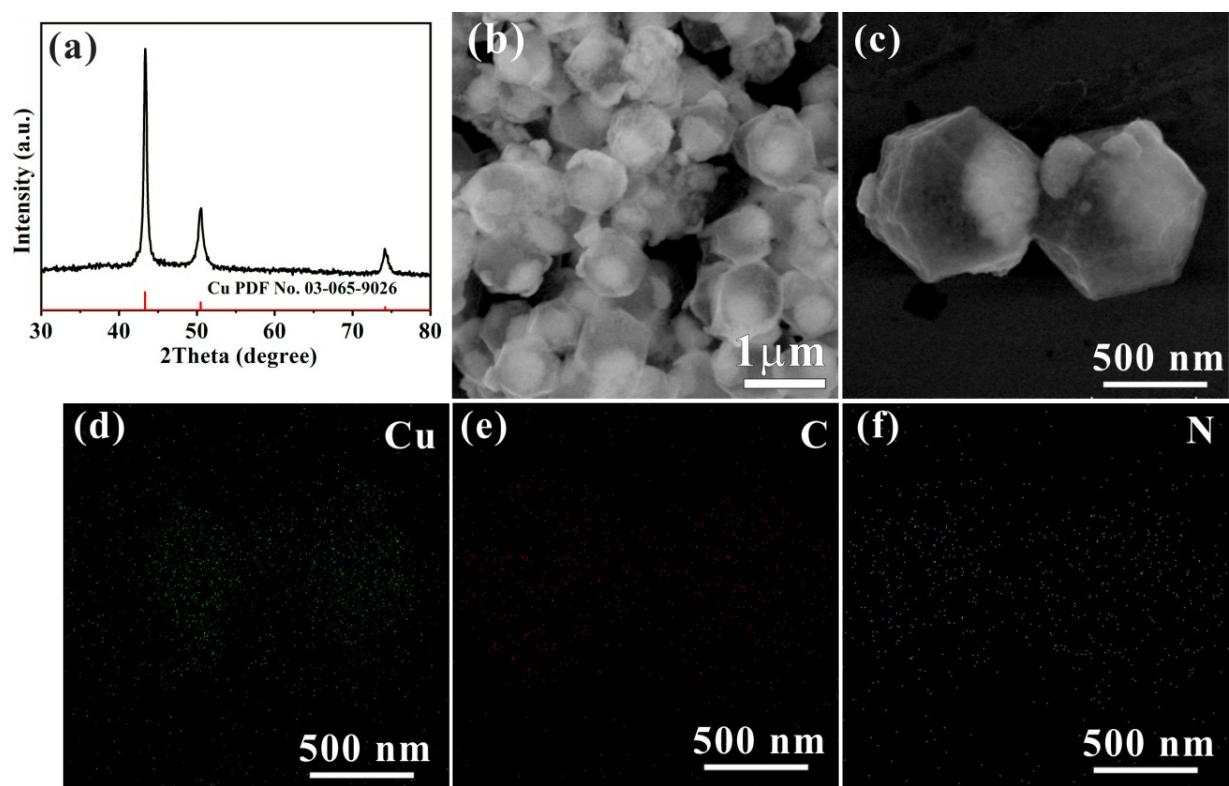


Fig. S6. Auger Cu LMM peak of Cu/In₂O₃@N-C nanocomposites.

Fig. S7. (a)Typical XRD pattern of Cu/N-C, (b) SEM image of Cu/N-C, (c-f) corresponding

elemental mapping.

Fig. S8. (a) Typical XRD pattern of Cu/In₂O₃, (b) SEM image of Cu/In₂O₃, (c-h)

corresponding elemental mapping.

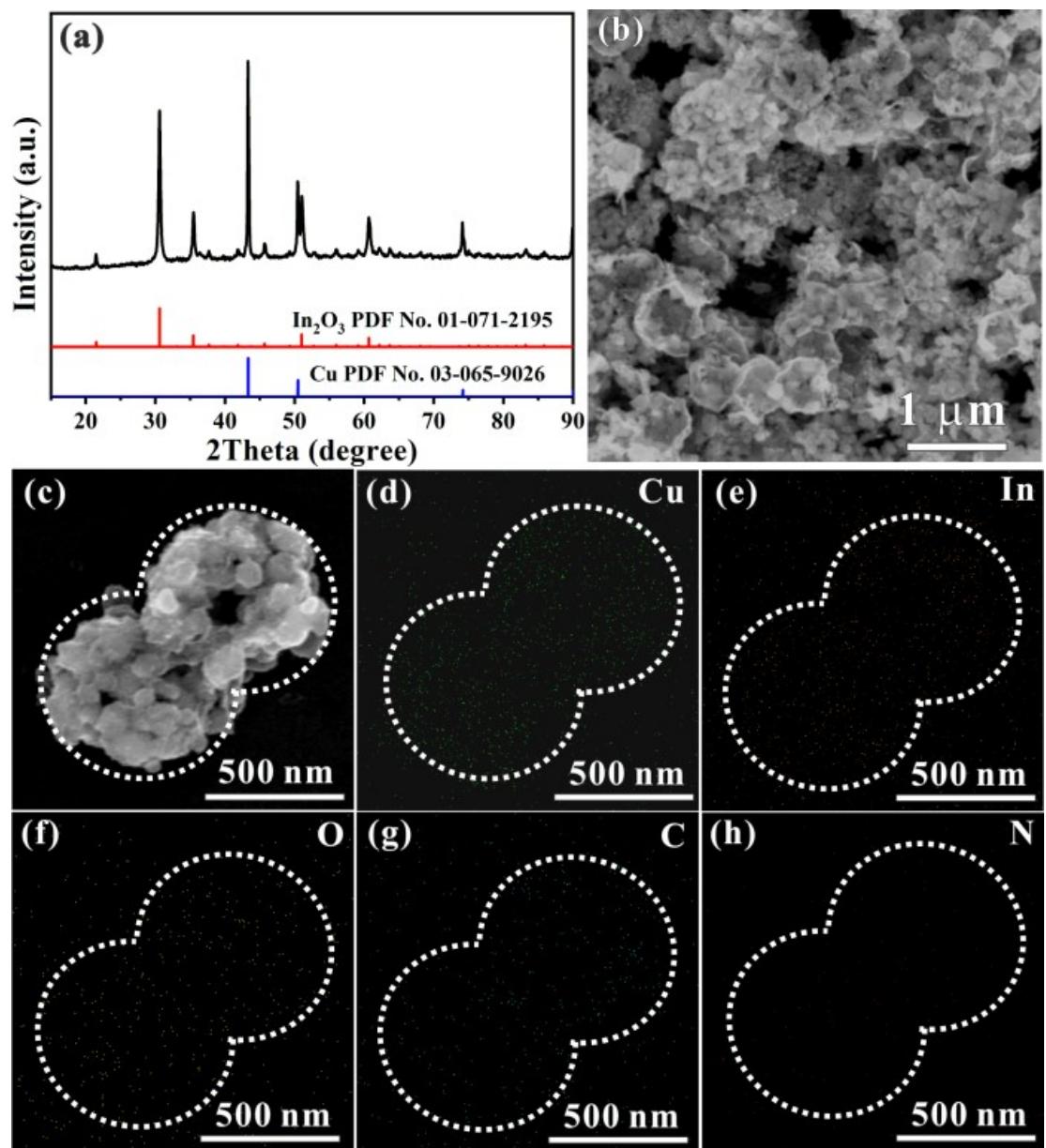
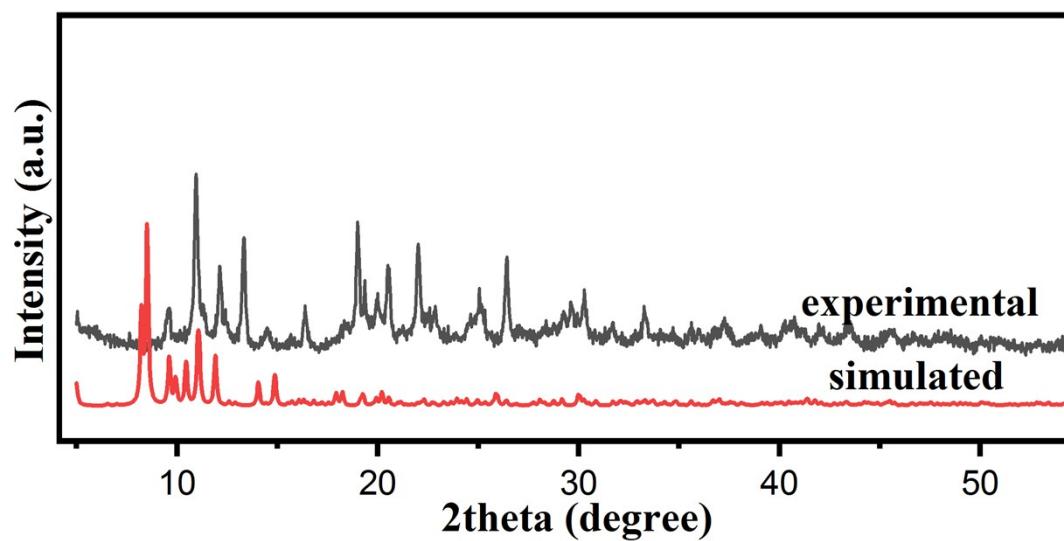
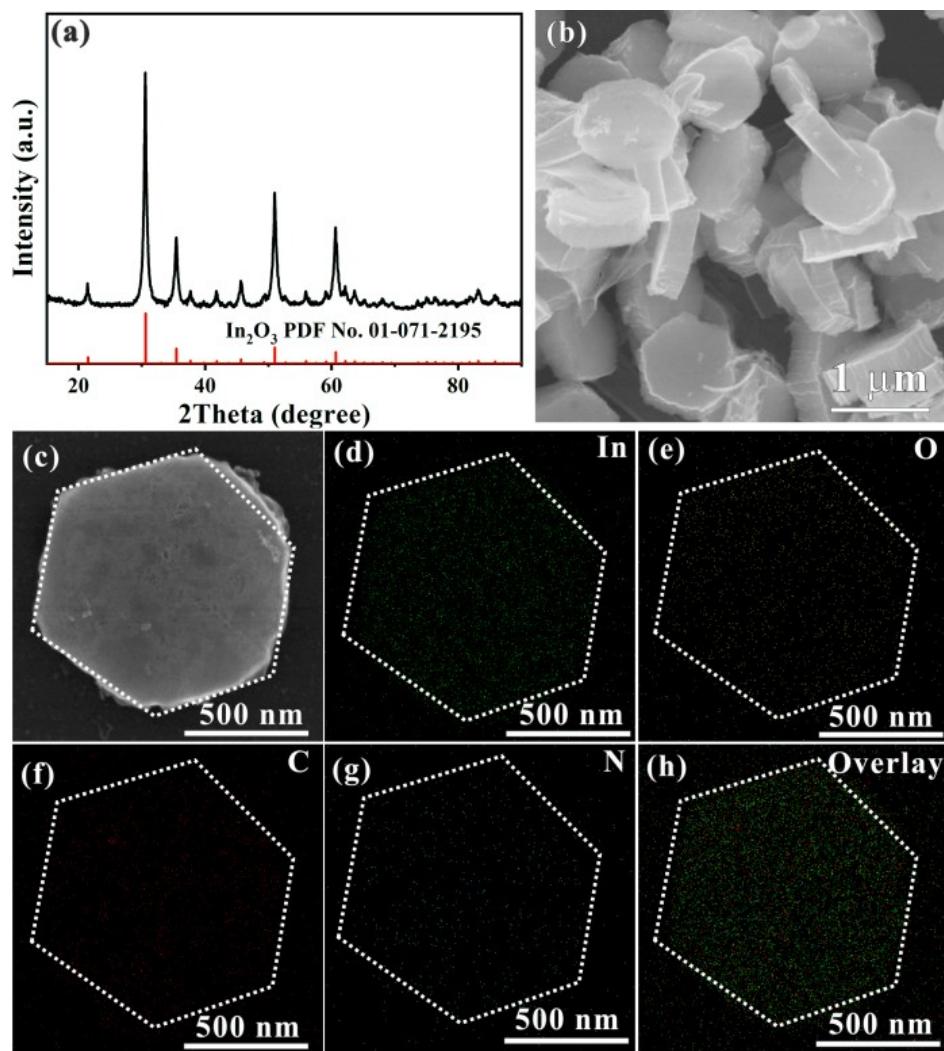
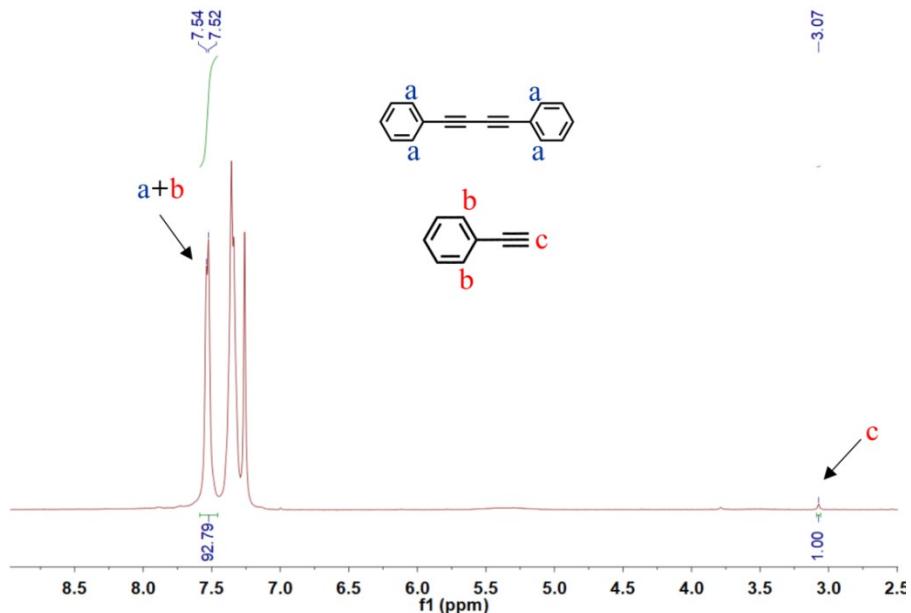




Fig. S9. XRD pattern of MOF precursor of In_2O_3 @N-C (In-MOF), comparing with the

simulated data from ref¹. Their structures are almost the same.

Fig. S10. (a) Typical XRD pattern of In₂O₃@N-C, (b) SEM image of In₂O₃@N-C, (c-h) corresponding elemental mapping.


The calculation equation of the product yield:

$$yield = \frac{\frac{S_a}{2}}{\frac{S_a}{2} + S_c * 2} * 100\%$$
$$, S_b = 2S_c, \text{Equation1}$$

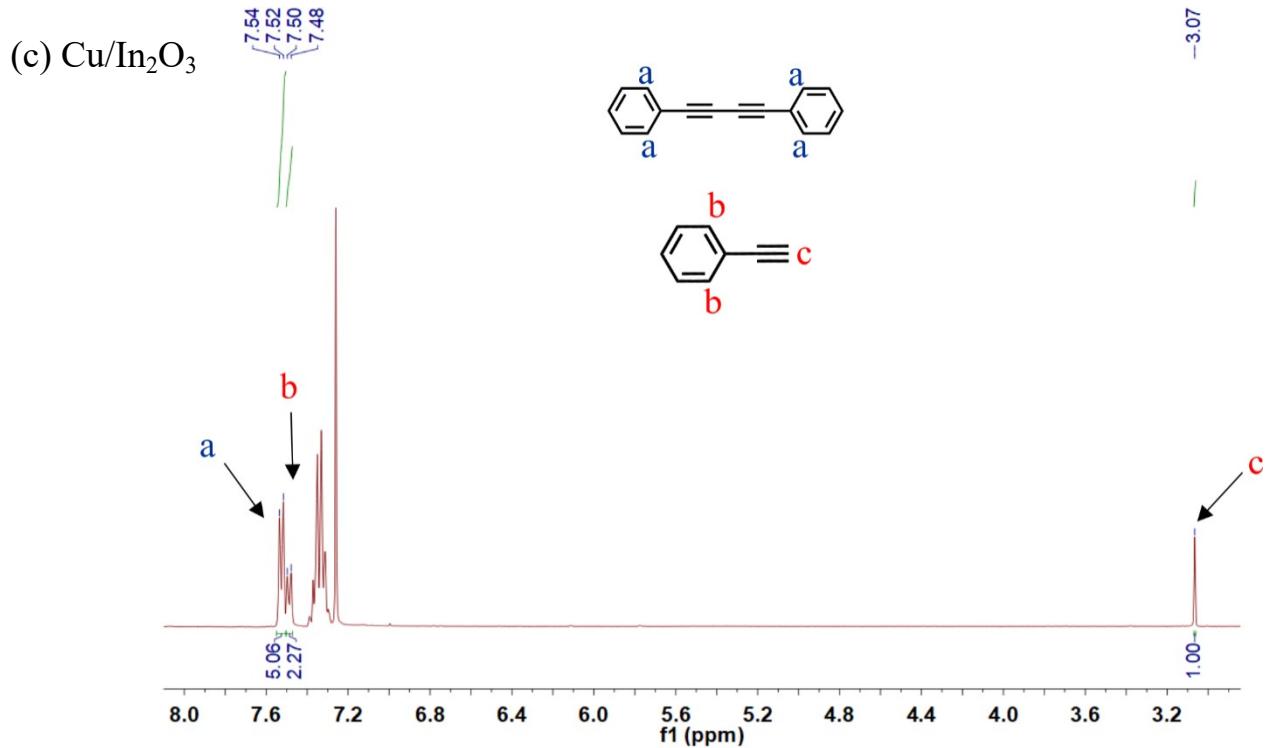
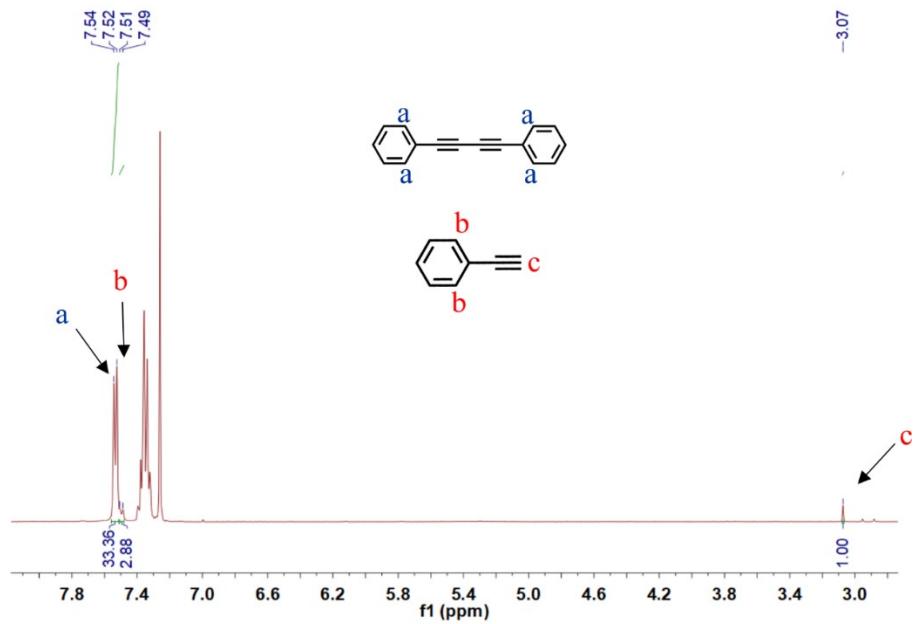
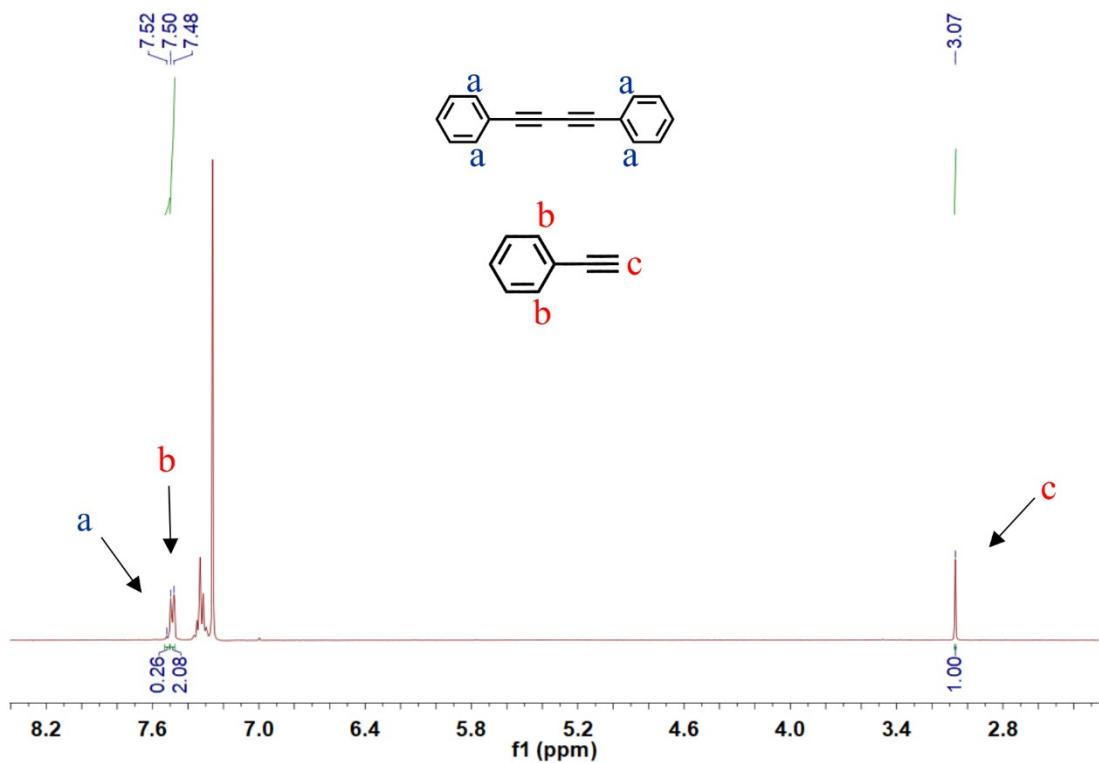
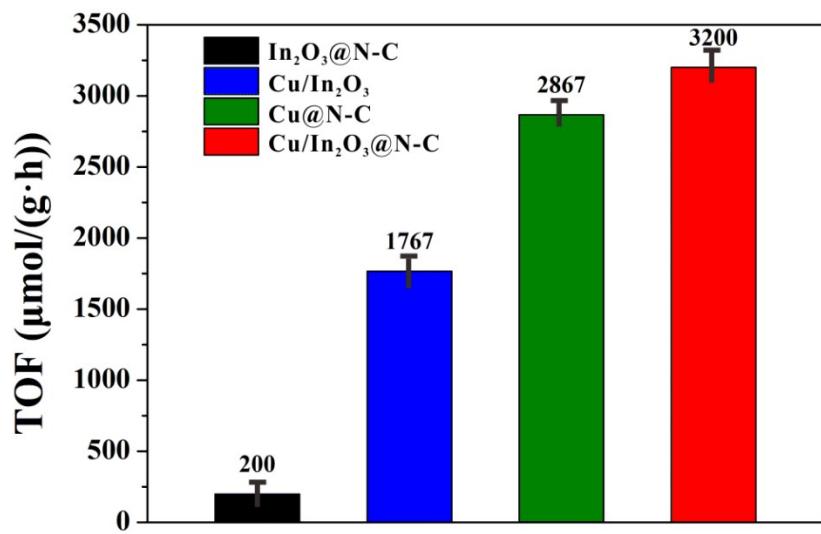


S is the peak area of the corresponding peak.

Fig. S11. ^1H NMR spectrum of the product of homo-coupling of terminal alkynes for the four catalysts (a) Cu/In₂O₃@N-C, (b) Cu@N-C, (c) Cu/In₂O₃, (d)In₂O₃@N-C.


(a) Cu/In₂O₃@N-C


(b) Cu@N-C

(d) In₂O₃@N-C

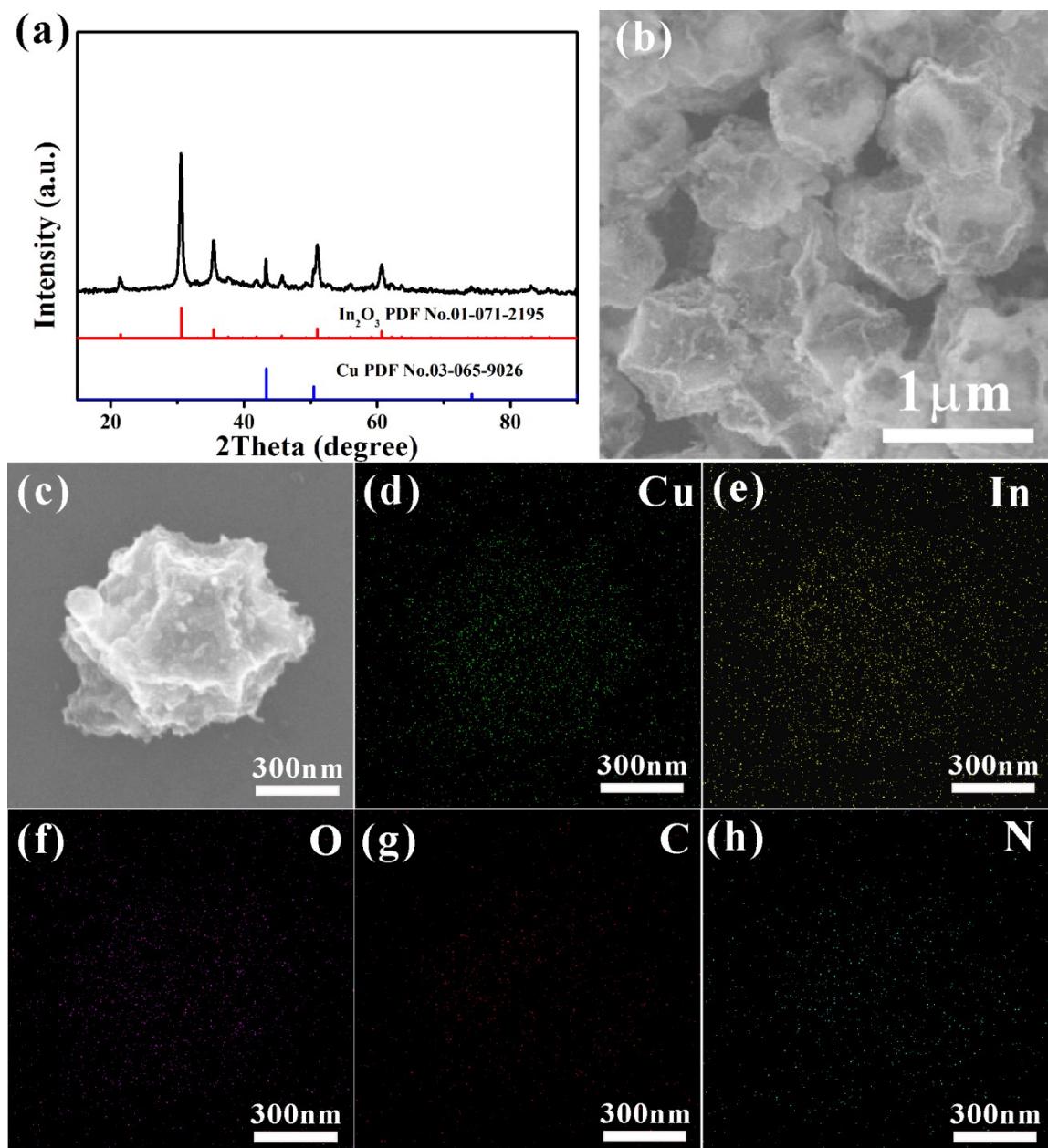
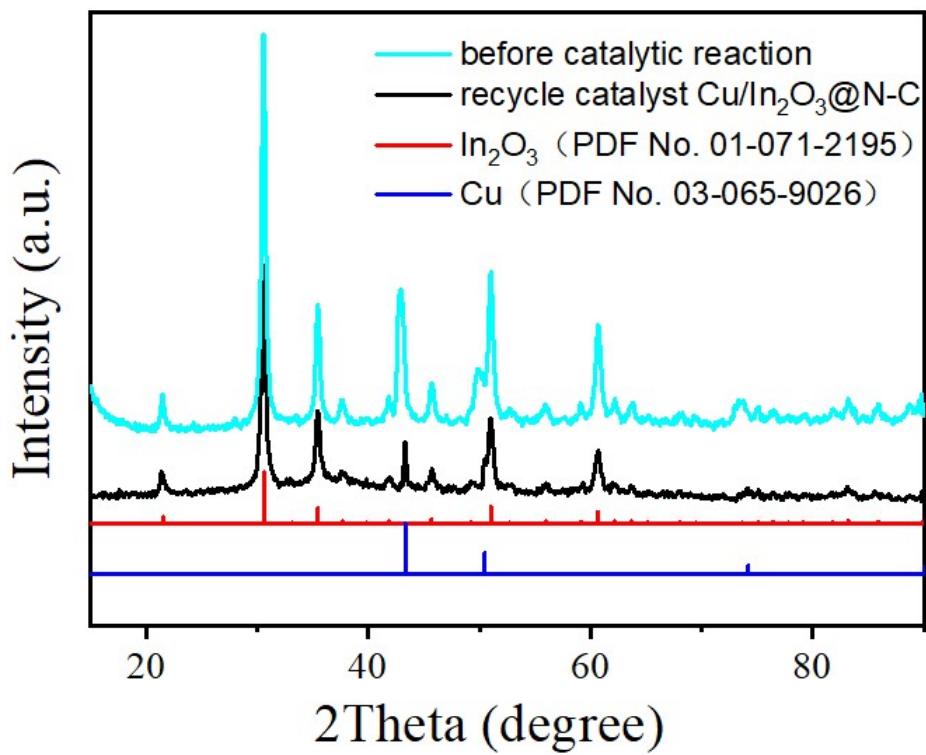


Fig. S12. Turnover frequency (TOF) graph of four catalysts.



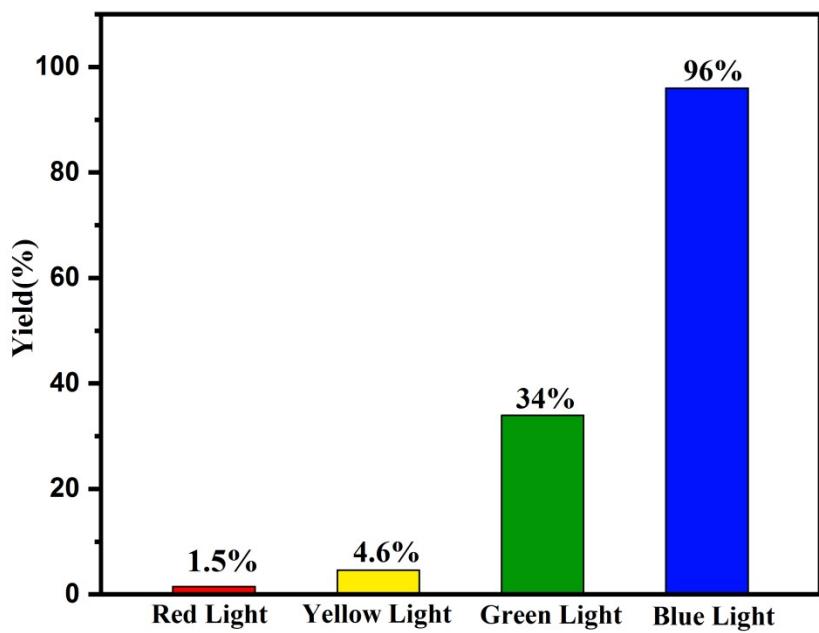

Fig. S13. Characterizations of Cu/In₂O₃@N-C after catalytic reaction (a) XRD pattern, (b) SEM image, (c) SEM image of single particle, (d-h) corresponding elemental mapping.

Fig. S14. Comparison of XRD pattern before and after catalytic reaction.

Fig. S15. Comparison of the photocatalytic efficiency of for aerobic oxidative coupling reaction of phenylacetylene under different wavelength of light.

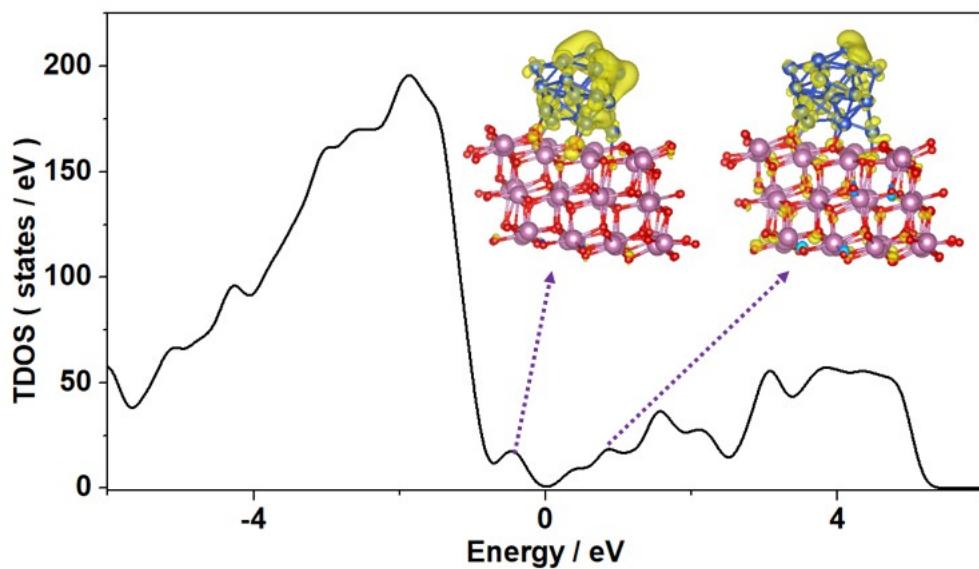
Literature survey

Table S1 The reported catalytic conditions for homo-coupling of terminal alkynes.

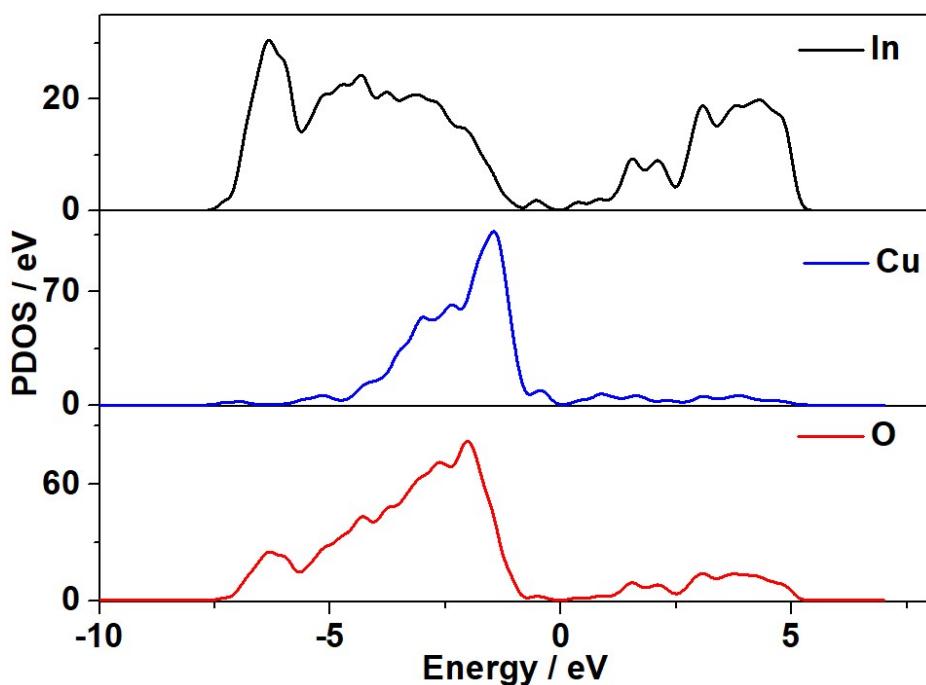
Ref ²	[Cu] ^a	Cu ^{2 b}	Solvent	Temp	Oxidant	time	Conv.(%)
Cu-Cu ₂ O-C	1.65	Cu ^{0,Cu⁺}	CH ₃ CN	25, white LED	CO ₂	20 h	>99
Entry	Conv.(%)	Entry	Conv.(%)	Entry	Conv.(%)	Entry	Conv.(%)
dark	7	Cu	c	Cu-Cu ₂ O-RGO	39	Cu-C	c
O ₂	12	Cu ₂ O	2	Cu-Cu ₂ O-SWCNTs	18		
N ₂	4	Cu Cu ₂ O	11	Cu-Cu ₂ O-graphite	15		
Ref ³	[Cu]	Cu	Solvent	Temp	Oxidant	time	Conv.(%)
Cu/C ₃ N ₄	10	Cu ⁰	iPrOH	25, KOH	O ₂	6 h	99
Entry	Conv.(%)	Entry	Conv.(%)	Entry	Conv.(%)	Entry	Conv.(%)
CuNPs	69	Cu(OAc) ₂	54	dark	99	H ₂ O	Trace
Neat	70	EtOH	15	iPrOH (2 eq.)	84	DMSO	15
Toluene	Trace	DMF	40	iPrOH (4 eq.)	99	CH ₃ CN	10
Substitute scope	Electron donating and withdrawing groups –good yields, but aliphatic alkyens worse						
Ref	[Cu]	Cu	Solvent	Temp	Oxidant	time	Conv.(%)
CuAl-hydro ⁴	110	Cu ²⁺	CH ₃ CN	25,TMEDA	air	4 h	88
Fibe-PQN@Cu(I) ⁵	1	Cu ⁺	AcOEt	25,1-Butylamine	air	8 h	99
SILP ⁶	6	Cu ²⁺	CH ₃ CN	25,TMEDA	air	4 h	88
Ref	[Cu]	Cu	Solvent	Temp	Oxidant	time	Conv.(%)
Cu/TiO ₂ ⁷	5	Cu ⁰	THF	65,piperidine	air	6 h	>99
Entry	Conv.(%)	Entry	Conv.(%)	Entry	Conv.(%)	Entry	Conv.(%)
Cu/activated C	9	zeolite Y	6	MgO	3	Al ₂ O ₃	24
magnetite	91	H ₂ O	4	toluene	0	MeCN	0
EtOH	0	DMSO	0	acetone	0		
Ref	[Cu]	Cu	Solvent	Temp	Oxidant	time	Conv.(%)
Cu/TiO ₂ -D ⁸	0.15	Cu ⁺	toluene	110	air	3 h	99
Entry	Conv.(%)	Entry	Conv.(%)	Entry	Conv.(%)	Entry	Conv.(%)
SF(Cu ²⁺)	20	IMP(Cu ²⁺)	15				
Ref	[Cu]	Cu	Solvent	Temp	Oxidant	time	Conv.(%)
Cu(OH)x/TiO ₂ ⁹	5	Cu ²⁺	Toluene	100	O ₂	0.5 h	90-82
Ref	[Cu]	Cu	Solvent	Temp	Oxidant	time	Conv.(%)
Cu(OH)x/ OMS-		Cu ²⁺	Toluene	100	O ₂	10 min	98
CuOx/OMS-2 ¹¹		Cu ²⁺	Toluene	100	air	12 h	98
Cu/MnOx ¹²	6	Cu ²⁺	toluene	105	air	3 h	>99
N ₂	70%						
Ref	[Cu]	Cu	Solvent	Temp	Oxidant	time	Conv.(%)
Cu-hydro ¹³	15	Cu ²⁺	CH ₃ CN	reflux	air	72	98
CuNPs ¹⁴	400	Cu ⁰	THF	66	air	8 h	90
CuNPs/MagSilica ¹⁵	7.5		THF	66,piperidine	air	2 h	95
Cu(II)-clay ¹⁶	10	Cu ²⁺	DMSO	80	O ₂	3 h	98
Entry	Conv.(%)	Entry	Conv.(%)	Entry	Conv.(%)	Entry	Conv.(%)
CuNi/clay	53	CuMn/clay	53	CuZn/clay	61	CuAl/clay	58
CuFe/clay	39	CuSn/clay	62	CuO	34	Cu ₂ O	43
CuCo/clay	65						
Ref ¹⁷	[Cu]	Cu	Solvent	Temp	Oxidant	time	Conv.(%)
CuCl	5	Cu ⁺	CH ₃ CN	25, blue LED	O ₂	7 h	98
Entry	Conv.(%)	Entry	Conv.(%)	Entry	Conv.(%)	Entry	Conv.(%)
CuCl ₂	c	Cu(OAc) ₂	c	neat	c	MeOH	74
THF	23	DMSO	22	DMF	45	dark	c
Ref ¹⁸	[Cu]	Cu	Solvent	Temp	Oxidant	time	Conv.(%)

Cu(OAc) ₂	0.2	Cu ²⁺	DMSO	90	air	3	96
Entry	Conv.(%)	Entry	Conv.(%)	Entry	Conv.(%)	Entry	Conv.(%)
Cu tartrate	20	CuSO ₄	67	CuCl ₂	38	CuBr ₂	46
Cu2citrate	28	Cu(acac) ₂	42	Cu(NO ₃) ₂	30	CuO	c
1,4-Dioxane	56	MeCN	43	DMF	94	Toluene	c
Substitute scope	Electron donating –smooth yields and withdrawing groups –bad yields, but aliphatic						
Ref	[Cu]	Cu	Solvent	Temp	Oxidant	time	Conv.(%)
Cu ₂ -Sili ¹⁹	4.4	Cu ²⁺	PhCN	100	O ₂	3 h	91
Gold Clusters ²⁰							
Au-OMS-2 ²¹							
Au@CrADC ²²							

^a(mol %);^bvalence state


3. Computational Details

All density functional calculations were carried out utilizing Vienna ab-initio Simulation



Package (VASP).^{23, 24} Within the framework of gradient of electronic density, Perdew Burke Ernzerhof (PBE)²⁵ functional was used to treat the exchange and correlation (XC) part in the Kohn–Sham equation. The ion-electron interaction was described by the projector-augmented wave (PAW)²⁶ pseudopotential, having the greater computational efficiency of plane wave as well as high accuracy of ultrasoft pseudopotential. Plane wave function with kinetic energy less than E_{cut} of 450 eV is included in the basic set. The K-Point mesh of $4 \times 4 \times 2$ grid, featuring enough accuracy to total energy by convergence test, was used to sample Brillouin zone for geometrical optimization. For self-consistent field (SCF) calculations, the stopping criterion was set to the energy difference less than 1.0×10^{-5} eV, while for geometrical optimization the convergence will reach until the Hellmann–Feynman force per atom less than 0.01 eV/Å. Moreover, DFT-D3BJ²⁷ method was used to correct the Van der Waals force. The adsorption energy is typically evaluated as following formula: $E_a = E(\text{phenylacetylene/Cu/In}_2\text{O}_3) - E(\text{phenylacetylene}) - E(\text{Cu/In}_2\text{O}_3)$, where $E(\text{phenylacetylene/Cu/In}_2\text{O}_3)$, $E(\text{phenylacetylene})$ and $E(\text{Cu/In}_2\text{O}_3)$ are single-point energy of relaxed configurations.

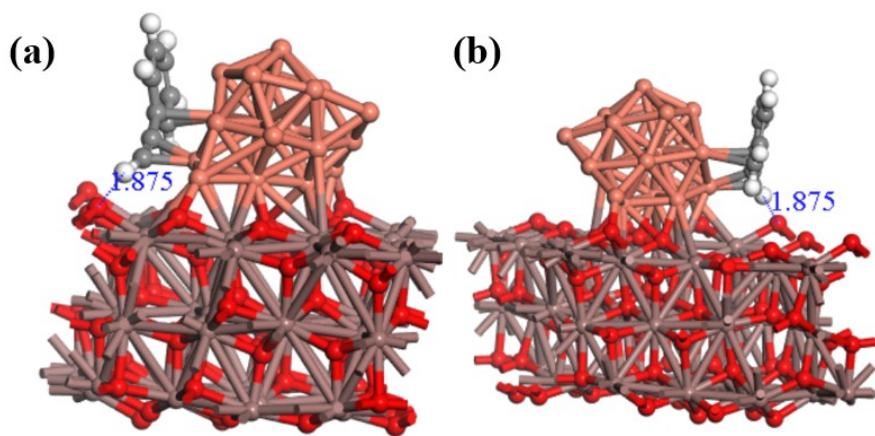

Fig. S16. Total density of states of Cu/In₂O₃ with the charge density of VBM and CBM.

Fig. S17. Partial density of states of Cu/In₂O₃.

Fig. S18. Adsorption structure of phenylacetylene on Cu/In₂O₃ with two side view.

4. References

1 S. T. Zheng, J. T. Bu, Y. Li, T. Wu, F. Zuo, P. Feng and X. Bu, *J. Am. Chem. Soc.*, 2010, **132**, 17062-17064.

2 J. Cai, Y. Li, M. Zhang and Z. Li, *Inorg. Chem.*, 2019, **58**, 7997-8002.

3 H. Xu, K. Wu, J. Tian, L. Zhu and X. Yao, *Green Chem.*, 2018, **20**, 793-797.

4 B. C. Zhu and X. Z. Jiang, *Appl. Organomet. Chem.*, 2007, **21**, 345-349.

5 Q. Hu, X.-L. Shi, Y. Chen, F. Wang, Y. Weng and P. Duan, *J. Ind. Eng. Chem.*, 2019, **69**, 387-396.

6 S. Normen, *Comb. Chem. High Throughput Screening*, 2012, **15**, 170-179.

7 F. Alonso, T. Melkonian, Y. Moglie and M. Yus, *Eur. J. Org. Chem.*, 2011, **2011**, 2524-2530.

8 Z. Luo, S. A. Cetegen, R. Miao, T. Jiang, S.-Y. Chen, T. Jafari, Y. Zhang and S. L. Suib, *J. Catal.*, 2016, **338**, 94-103.

9 T. Oishi, T. Katayama, K. Yamaguchi and N. Mizuno, *Chem. Eur. J.*, 2009, **15**, 7539-7542.

10 T. Oishi, K. Yamaguchi and N. Mizuno, *ACS Catal.*, 2011, **1**, 1351-1354.

11 Y. Huang, K. Zheng, X. Liu, X. Meng and D. Astruc, *Inorg. Chem. Front.*, 2020, **7**, 939-945.

12 S. Biswas, K. Mullick, S.-Y. Chen, D. A. Kriz, M. D. Shakil, C.-H. Kuo, A. M. Angeles-Boza, A. R. Rossi and S. L. Suib, *ACS Catal.*, 2016, **6**, 5069-5080.

13 B. Maaten, J. Moussa, C. Desmarests, P. Gredin, P. Beaunier, T. Kanger, K. Tõnsuaadu, D. Villemin and M. Gruselle, *J. Mol. Catal. A: Chem.*, 2014, **393**, 112-116.

14 G. Radivoy, F. Nador, L. Fortunato, Y. Moglie and C. Vitale, *Synthesis*, 2009, **2009**, 4027-4031.

15 F. Nador, M. A. Volpe, F. Alonso, A. Feldhoff, A. Kirschning and G. Radivoy, *Appl. Catal. A Gen.*, 2013, **455**, 39-45.

16 B. A. Dar, D. Vyas, V. Shrivastava, S. Farooq, A. Sharma, S. Sharma, P. R. Sharma, M. Sharma and B. Singh, *C. R. Chimie*, 2014, **17**, 316-323.

17 A. Sagadevan, V. P. Charpe and K. C. Hwang, *Catal. Sci. Technol.*, 2016, **6**, 7688-7692.

18 X. Jia, K. Yin, C. Li, J. Li and H. Bian, *Green Chem.*, 2011, **13**, 2175-2178.

19 K. Kamata, S. Yamaguchi, M. Kotani, K. Yamaguchi and N. Mizuno, *Angew. Chem.*, 2008, **120**, 2441-2444.

20 B. Vilhanová, J. Václavík, L. Artiglia, M. Ranocchiari, A. Togni and J. A. van Bokhoven, *ACS Catal.*, 2017, **7**, 3414-3418.

21 K. Yamaguchi, Y. Wang, T. Oishi, Y. Kuroda and N. Mizuno, *Angew. Chem. Int. Ed. Engl.*, 2013, **52**, 5627-5630.

22 J. Chen, Y. Xin, J. Wu, P. Liao, L. Chen and J. Zhang, *ChemNanoMat*, 2021, **7**, 334-340.

23 G. Kresse and J. Furthmüller, *Comp. Mater. Sci.*, 1996, **6**, 15-50.

24 G. Kresse and J. Hafner, *Phys. Rev. B: Condens. Matter*, 1993, **47**, 558-561.

25 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.

26 P. E. Blochl, *Phys. Rev. B: Condens. Matter*, 1994, **50**, 17953-17979.

27 H. Schroder, A. Creon and T. Schwabe, *J Chem Theory Comput*, 2015, **11**, 3163-3170.