Supporting Information

Phase-structure Dependent Na Ion Transport in Yttrium-Iodide Sodium Superionic Conductor Na₃YI₆

He Huang^{a, b}, Hong-Hui Wu^{*a, b}, Cheng Chi^c, Yuewang Yang^b, Jiongzhi Zheng^b, Baoling Huang^{*b}, and Shouguo Wang^{*a}

^a School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China

^b Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

^c Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China

* Corresponding Authors: <u>wuhonghui@ustb.edu.cn</u> (H. H. Wu), <u>mebhuang@ust.hk</u> (B. Huang), and <u>sgwang@ustb.edu.cn</u> (S. G. Wang)

c2m-Na₃YI₆ p3m1-Na₃YI₆ p31c-Na₃YI₆ a: 8.04 Å, b: 13.62 Å, c: 8.00 Å a: 13.49 Å, b: 13.49 Å, c: 7.57 Å a: 8.04 Å, b: 8.04 Å, c: 14.66 Å $\alpha = 90.0^{\circ}, \beta = 109.5^{\circ}, \gamma = 90.0^{\circ}$ $\alpha = 90.0^{\circ}, \beta = 90.0^{\circ}, \gamma = 60.0^{\circ}$ $\alpha = 90.0^{\circ}, \beta = 90.0^{\circ}, \gamma = 120.0^{\circ}$ Unit-cell Vol = 824.87 Å³ Unit-cell Vol = 1192.96 Å^3 Unit-cell Vol = 821.11 Å^3 Na1 (0.000, 0.667, 0.000) Na1 (0.000, 0.664, 0.000) Na1 (0.333, 0.667, 0.471) Na2 (0.000, 0.167, 0.000) Na2 (0.000, 0.343, 0.000) Na2 (0.333, 0.667, 0.029) Na3 (0.000, 0.832, 0.000) Na3 (0.343, 0.657, 0.000) Na3 (0.667, 0.333, 0.529) Na4 (0.000, 0.332, 0.000) Na4 (0.664, 0.335, 0.000) Na4 (0.000, 0.000, 0.250) Na5 (0.500, 0.167, 0.000) Na5 (0.336, 0.000, 0.000) Na5 (0.667, 0.333, 0.971) Na6 (0.500, 0.667, 0.500) Na6 (0.657, 0.000, 0.000) Na6 (0.000, 0.000, 0.750) Y1 (0.000, 0.997, 0.000) Na7 (0.000, 0.678, 0.500) Y1 (0.333, 0.667, 0.750) Y2 (0.000, 0.497, 0.500) Na8 (0.678, 0.322, 0.500) Y2 (0.667, 0.333, 0.250) I1 (0.239, 0.155, 0.230) Na9 (0.322, 0.000, 0.500) I1 (0.036, 0.681, 0.873) I2 (0.761, 0.155, 0.770) Y1 (0.000, 0.000, 0.000) I2 (0.319, 0.964, 0.627) I3 (0.239, 0.655, 0.730) Y2 (0.333, 0.333, 0.503) 13 (0.036, 0.355, 0.627) I4 (0.761, 0.655, 0.270) Y3 (0.667, 0.667, 0.497) I4 (0.319, 0.355, 0.873) 15 (0.768, 0.839, 0.762) I1 (0.120, 0.446, 0.738) 15 (0.645, 0.964, 0.873) I2 (0.446, 0.434, 0.738) I6 (0.232, 0.839, 0.238) I6 (0.355, 0.319, 0.373) I7 (0.768, 0.339, 0.262) I3(0.434, 0.120, 0.738) 17 (0.645, 0.681, 0.627) I8 (0.232, 0.339, 0.738) I4(0.554, 0.880, 0.262) I8 (0.355, 0.036, 0.127) 19 (0.769, 0.001, 0.235) I5(0.566, 0.554, 0.262) I9 (0.681, 0.645, 0.127) I10 (0.231, 0.001, 0.765) I6 (0.880, 0.566, 0.262) I10 (0.964, 0.645, 0.373) I11 (0.769, 0.501, 0.735) 17 (0.453, 0.774, 0.730) I11 (0.681, 0.036, 0.373) I12 (0.231, 0.501, 0.265) 18 (0.774, 0.772, 0.730) I12 (0.964, 0.319, 0.127) 19 (0.772, 0.453, 0.730) I10 (0.226, 0.547, 0.270) I11 (0.228, 0.226, 0.270) I12 (0.547, 0.228, 0.270) I13 (0.110, 0.785, 0.771) I14 (0.104, 0.110, 0.771) I15 (0.785, 0.104, 0.771) I16 (0.215, 0.890, 0.229) I17 (0.890, 0.896, 0.229) I18 (0.896, 0.215, 0.229)

Table 1. Structure information of the c2m-Na₃YI₆, p3m1-Na₃YI₆, and p31c-Na₃YI₆ with corresponding atomic coordinates.

Figure S1. Crystal information of the c2-Na₃YI₆ and the c2m-Na₃YI₆. The yellow, cyan, and purple balls represent the Na, Y and I atoms, respectively. The cyan polyhedra represent the YI₆ octahedra.

Figure S2. Element weighted electronic band structures of (a) $c2m-Na_3YI_6$, (b) $p3m1-Na_3YI_6$, and (c) $p31c-Na_3YI_6$ calculated by PBE functional.

Figure S3. Element weighted electronic band structures of (a) c2m-Na₃YI₆, (b) p3m1-Na₃YI₆, and (c) p31c-Na₃YI₆ calculated by HSE06 functional.

Figure S4. Mean square displacements of $c_2m-Na_3YI_6$ at the temperature range from 700 K to 1000 K with the time duration of 100 ps.

Figure S5. Mean square displacements of $p3m1-Na_3YI_6$ at the temperature range from 700 K to 1000 K with the time duration of 100 ps.

Figure S6. Mean square displacements of $p3m1-Na_3YI_6$ at the temperature range from 700 K to 1000 K with the time duration of 100 ps.

Figure S7. Na ion probability density distribution (yellow ribbon) in (a) c2m-Na₃YI₆, (b) p3m1-Na₃YI₆, and (c) p31c-Na₃YI₆ at 900 K, with the isosurface value of $\frac{1/32 P_{max}}{P_{max}}$.

Figure S8. Arrhenius plot of the Na ionic diffusivities versus the inverse of the temperature of c2m-Na₃YI₆, p3m1-Na₃YI₆, and p31c-Na₃YI₆ obtained from the AIMD calculations. The corresponding fitted Na activation energy values are labeled.