Electromagnetic Interference Shielding Material for Super-broadband: Ultrathin, Sandwich

structure Multi-walled Carbon Nanotube/Silver Nanowire Film

Zheng Wang^{a, b}, Qing-Qiang Kong^{a, b}, Zong-Lin Yi^{a, b}, Li-Jing Xie^{a, b}, Hui Jia^{a, b}, Jing-Peng Chen^{a, b},

Dong Liu^{a, b}, Dong Jiang^{a, c*}, Cheng-Meng Chen^{a, c*}

^a CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China

^b University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China

^c Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding authors

E-mail addresses: jdred@sxicc.ac.cn (Dong Jiang)

ccm@sxicc.ac.cn (Cheng-Meng Chen)

Supporting information

Figure S1. Digital photos of the building blocks of (a) AgNWs, (b) MWCNTs, and (c) Ag/C-PM.
Digital photos of (d) AgNWs films and (e) Ag/C-7L. (f-h)Digital photograph of Ag/C-7L film with the state of twisting and buckling.

Fig. S2. Elemental mapping of (a-c) the Ag/C-3L film; Elemental mapping of (d-e) the Ag/C-5L

Figure S3. XRD spectra Ag NWs.

Figure S4. Cross-sectional SEM image of (a–b) the Ag/C-7L film.

Figure S5 (a) Conductivity of all samples. (b) Reflection coefficient (R)

Figure S6. The density of Ag NWs, MWCNTs, Ag/C-PM, Ag/3L, Ag/C-5L, and Ag/C-7L films.

Number	Samples	EMI SE (dB)	Thickness (μm)	EMI SE/t (dB/mm)	Ref.
1	MWCNT/cellulose/Ag NWs film	23.8	154	155	1
2	rGO/Ag NWs	24.0	100	240	2
3	graphene/ Ag NWs/graphene	38.0	10	3800	3
4	graphene/Ag NWs film	38.5	30	1283	4
5	MWCNTs/Ag NWs-PVDF	70.0	1174	60	5
6	CNTs/Polyurethane	43.5	2000	29	6

7	PVDF/CNTs/Ni@CNTs film	51.4	500	103	7
8	Al foil	66.0	8	8250	8
9	Cu foil	70.0	10	7000	8
10	MXene foam	32.0	6	5333	9
11	MXene/Nanocellulose film	24.0	47	511	10
12	MXene/RGO-epoxy solids	56.4	2000	28	11
13	MXene/CNT aerogel	62.8	1000	63	12
14	Graphene/PMMA foam	19.0	2400	8	13
15	Carbon/Graphene foam	24.0	24	1000	14
16	Graphene foam	25.0	300	83	15
17	MWCNT/WPU	24.0	50	480	16
18	SWCNT/epoxy	25.0	2000	13	17
19	Ag NW/PANI	48.0	13	308	18
20	Ag NW/epoxy	25.0	40	625	19
21	Ag NW/PVA	30.0	40	750	19
22	Ag NW/PS	32.0	800	40	20
23	Cu NW/PS	35.0	210	167	21
24	MWCNT/ Ag NWs/MWCNT film	72.0	12	60080	This works

References

- 1 X. Liang, J. Lu, T. Zhao, X. Yu, Q. Jiang, Y. Hu, P. Zhu, R. Sun and C. Wong, *Adv. Mater. Interfaces*, 2018, 1801635.
- 2 Y. Yang, S. Chen, W. Li, P. Li, J. Ma, B. Li, X. Zhao, Z. Ju, H. Chang, L. Xiao, H. Xu and Y. Liu, *ACS Nano*, 2020, **14**, 8754–8765.
- 3 R. R. da Silva, M. Yang, S.-I. Choi, M. Chi, M. Luo, C. Zhang, Z.-Y. Li, P. H. C. Camargo, S. J. L. Ribeiro and Y. Xia, *ACS Nano*, 2016, **10**, 7892–7900.
- 4 T. K. Gupta, B. P. Singh, V. N. Singh, S. Teotia, A. P. Singh, I. Elizabeth, S. R. Dhakate, S. K. Dhawan and R. B. Mathur, *J. Mater. Chem. A*, 2014, **2**, 4256.
- 5 M. Sang, S. Wang, S. Liu, M. Liu, L. Bai, W. Jiang, S. Xuan and X. Gong, ACS Appl. Mater. Interfaces, 2019, 11, 47340–47349.
- 6 W.-C. Yu, T. Wang, Y.-H. Liu, Z.-G. Wang, L. Xu, J.-H. Tang, K. Dai, H.-J. Duan, J.-Z. Xu and Z.-M. Li, *Chem. Eng. J.*, 2020, **393**, 124644.
- 7 S. Zeng, X. Li, M. Li, J. Zheng, S. E, W. Yang, B. Zhao, X. Guo and R. Zhang, *Carbon*, 2019, 155, 34–43.
- 8 F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. Man Hong, C. M. Koo and Y. Gogotsi, *Science*, 2016, **353**, 1137–1140.
- 9 W. Yuan, J. Yang, F. Yin, Y. Li and Y. Yuan, Compos. Commun., 2020, 19, 90-98.
- 10C. Weng, T. Xing, H. Jin, G. Wang, Z. Dai, Y. Pei, L. Liu and Z. Zhang, *Compos. Part Appl. Sci. Manuf.*, 2020, **135**, 105927.
- 11 J.-Q. Luo, S. Zhao, H.-B. Zhang, Z. Deng, L. Li and Z.-Z. Yu, Compos. Sci. Technol., 2019, 182, 107754.
- 12P. Sambyal, A. Iqbal, J. Hong, H. Kim, M.-K. Kim, S. M. Hong, M. Han, Y. Gogotsi and C. M. Koo, ACS Appl. Mater. Interfaces, 2019, 11, 38046–38054.
- 13 A. L. Dyer, E. J. Thompson and J. R. Reynolds, *ACS Appl. Mater. Interfaces*, 2011, **3**, 1787–1795.
- 14 Y. Li, B. Shen, X. Pei, Y. Zhang, D. Yi, W. Zhai, L. Zhang, X. Wei and W. Zheng, *Carbon*, 2016, **100**, 375–385.
- 15B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei and W. Zheng, Carbon, 2016, 102, 154–160.
- 16Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue, L. Zhou, Y. Pei, H. Zhang and Z. Zhang, *Carbon*, 2016, 96, 768–777.
- 17 Y. Huang, N. Li, Y. Ma, F. Du, F. Li, X. He, X. Lin, H. Gao and Y. Chen, *Carbon*, 2007, 45, 1614–1621.
- 18D. Zhang, J. Yang, Q. Jiang, L. Fu, Y. Xiao, Y. Luo and Z. Zhou, J. Mater. Chem. A, 2016, 4, 4188–4193.
- 19Y.-H. Yu, C.-C. M. Ma, C.-C. Teng, Y.-L. Huang, S.-H. Lee, I. Wang and M.-H. Wei, *Mater. Chem. Phys.*, 2012, **136**, 334–340.
- 20M. Arjmand, A. A. Moud, Y. Li and U. Sundararaj, RSC Adv., 2015, 5, 56590-56598.
- 21 M. H. Al-Saleh, G. A. Gelves and U. Sundararaj, *Compos. Part Appl. Sci. Manuf.*, 2011, **42**, 92–97.