Supporting Information

Bioinspired tailoring of nanoarchitectured nickel sulfide@nickel permeated carbon composite as highly durable and redox chemistry enabled battery-type electrode for hybrid supercapacitors

Mohan Reddy Pallavolu,^a Ramesh Reddy Nallapureddy,^a Hemachandra Rao Goli,^b Arghya Narayan Banerjee,^{a*} Gutturu Rajasekhara Reddy,^a and Sang W. Joo^{a*}

^aSchool of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea ^bDepartment of Physics, Banasthali University, Banasthali, Rashathan-304022, India

Corresponding authors:

Arghya Narayan Banerjee (arghya@ynu.ac.kr; banerjee arghya@hotmail.com);

Sang W. Joo (<u>swjoo@yu.ac.kr</u>)

Table S1: Crystallographic data of NiS

Parameters	NiS			
Crystal system	Rhombohedral			
Space group	R3m			
Space group number	160			
<i>a</i> (Å)	9.62			
<i>b</i> (Å)	9.62			
<i>c</i> (Å)	3.15			
α (deg.)	90.0			
β(deg.)	90.0			
γ(deg.)	120			
Reference	JCPDS ICDD 00-012-0041			

 Table S2. Comparative electrochemical properties of wheat snack-derived NiS-Ni@C composite

 with recently reported redox-active materials.

Materials	Electrolyte	Current density (A g ⁻¹)	Specific capacity	Ref.
FeS _x /C/CNT	3 M KOH	1	370.5 C g ⁻¹	[1]
NiS ₂ /CNTs	2 M KOH	1	354 C g ⁻¹	[2]
CFC/NiS ₂ /PC	2 M KOH	1	424.5 C g ⁻¹	[3]
Ni ₃ S ₂ @NC	2 M KOH	2	205.4 C g ⁻¹	[4]
NiCo ₂ S ₄ /GA	3 M KOH	1	380.3 C g ⁻¹	[5]
FeS ₂ /graphene aerogel	6 M KOH	0.5	188.2 C g ⁻¹	[6]
Ni ₂ P/Ni/C	2 M KOH	1	257.2 C g ⁻¹	[7]
CoS ₂ /CNFs	6 M KOH	1	244 C g ⁻¹	[8]
3DCoS/graphene composite hydrogel	6 М КОН	1	253.8 C g ⁻¹	[9]
CuS/GO	3 M KOH	0.5	150 C g ⁻¹	[10]
Ni@NC	3 M KOH	0.5	224 C g ⁻¹	[11]
NiS-Ni@PC	2 M KOH	1	430 C g ⁻¹	This work

Device configuration	Electrolyte	Energy density (Wh/kg)	Power density (W/kg)	Ref.
NiS-HS//AC	2 M KOH	24.8	150	[12]
Ni ₃ S ₄ //AC	2 M KOH	18.625	150	[13]
NiS HNPs//AC	2 M KOH	11.6	187.5	[14]
NiS@C//C	2 M KOH	21.6	400	[15]
PHCSs/NiS//AC	6 M KOH	24.4	767	[16]
Ni ₃ S ₂ /MWCNT-NC//AC	2 M KOH	19.8	798	[17]
NiCo ₂ S ₄ /CFP//AC	2 M KOH	17.3	180	[18]
NiCoS@N-pCNFs//AC@N- pCNFs	3 М КОН	21.7	134.9	[19]
MoS ₂ /Ni ₃ S ₂ //rGO	6 M KOH	21.8	400	[20]
NiS-Ni@C//AC	2 М КОН	28.1	380	This
				work

Table S3. Comparable energy and power densities of previously reported device with our hybrid nanocomposite-based HSC.

Figure S1. XPS survey spectra of NiS_{1.2}-Ni@PC

Figure S2. (a) N_2 adsorption-desorption isotherm and (b) BJH pore size distribution of NiS_{1.2}-Ni@C (Inset: Pore volume vs. pore diameter).

Figure S3. (a)(i-iii) Low- and high-magnification TEM images of Ni@C and (b-e) EDX spectra and elemental mapping images of Ni@C showing the respective elements of C and Ni.

Fig. S4. CV plots of NiS_{1.2}-Ni@C electrode at different electrolyte concentrations.

Figure S5. CV and GCD curves of (a-b) Ni@PC, (c-d) NiS_{0.4}-Ni@PC, (e-f) NiS_{0.8}-Ni@PC, and (b-c) NiS_{1.2}-Ni@PC samples measured at different scan rates (5-15 mV s⁻¹) and current densities (1-20 A g⁻¹), respectively.

Fig. S6. Nyquist plots of NiS_{1.2}-Ni@C electrode before and after 5000 cycles. An increase in the R_s value is observed after 5000 cycles. Also, the diameter of the semicircular portion is increased after cycling, indicating an increase in the R_{ct} value. Also, the low-frequency linear part is slanted from a ~75° to ~60° angle (against *x*-axis), revealing an increase in the diffusion resistance after cycling.

Fig. S7. Schematic illustration of the enhanced electrochemical performance of the NiS-Ni@C electrodes.

Figure S8. a) Schematic illustration showing the synthesis process of wheat snack derived activated carbon, b) SEM image of porous carbon, c) XRD with inset Raman spectra of PC, d) Nitrogen adsorption/desorption isotherms, e) CV profiles at different scan rates of 5 - 50 mV s⁻¹, f) GCD profiles at different current densities from 1 - 7 A g⁻¹, g) Specific capacitance values calculated from GCD data, and h) Nyquist plot of PC (Inset: Same plot at high frequency region).

Fig. S9. Comparison of the energy-power performance of our device against various other hybrid composite-based device reported in the literature.

References

- Y. Zhang, M. Xu, Y. Wang, S. Lin, L. Ji, X. Li, Y. Zhang, J. Zhao, Journal of Alloys and Compounds 2020, 834, 154916.
- [2] X. Lei, M. Li, M. Lu, X. Guan, *Materials* **2019**, *12*, 3509.
- [3] J.-B. Fang, C. Liu, Y.-Q. Cao, A.-D. Li, Journal of Materials Research 2020, 35, 738.
- [4] M. Kumar, D. I. Jeong, N. Sarwar, D. H. Yoon, Ceramics International 2021, 47, 16852.
- [5] B. Li, Z. Tian, H. Li, Z. Yang, Y. Wang, X. Wang, *Electrochimica Acta* 2019, 314, 32.
- [6] L. Pei, Y. Yang, H. Chu, J. Shen, M. Ye, Ceramics International 2016, 42, 5053.
- [7] Y. Xu, S. Xiong, S. Weng, J. Wang, J. Wang, H. Lin, Y. Jiao, J. Chen, New J. Chem. 2020, 44, 6810.
- [8] Z. Wang, C. Liu, G. Shi, G. Wang, Q. Zhang, H. Zhang, Y. Su, J. Yu, X. Li, F. Luo, Y. Hu, K. Yi, *Ionics* 2020, 26, 5737.
- [9] X. Meng, J. Deng, J. Zhu, H. Bi, E. Kan, X. Wang, Scientific Reports 2016, 6, 21717.
- [10] R. Singhal, D. Thorne, P. K. LeMaire, X. Martinez, C. Zhao, R. K. Gupta, D. Uhl, E. Scanley, C. C. Broadbridge, R. K. Sharma, *AIP Advances* 2020, *10*, 035307.
- [11] K. Wang, Z. Wang, J. Liu, C. Li, F. Mao, H. Wu, Q. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 47482.
- [12] T. Liu, C. Jiang, B. Cheng, W. You, J. Yu, J. Mater. Chem. A 2017, 5, 21257.
- [13] H. Wang, M. Liang, D. Duan, W. Shi, Y. Song, Z. Sun, *Chemical Engineering Journal* 2018, 350, 523.
- [14] Z. Li, X. Yu, A. Gu, H. Tang, L. Wang, Z. Lou, *Nanotechnology* **2017**, *28*, 065406.
- [15] J. Wu, F. Wei, Y. Sui, J. Qi, X. Zhang, International Journal of Hydrogen Energy 2020, 45, 19237.
- [16] D. Wu, H. Yu, C. Hou, W. Du, X. Song, T. Shi, X. Sun, B. Wang, *J Mater Sci* 2020, 55, 14431.
- [17] C.-S. Dai, P.-Y. Chien, J.-Y. Lin, S.-W. Chou, W.-K. Wu, P.-H. Li, K.-Y. Wu, T.-W. Lin, ACS Appl. Mater. Interfaces 2013, 5, 12168.
- [18] X. Xiong, G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang, M. Liu, Nano Energy 2015, 16, 71.

- [19] Y. Liu, Q. Lu, Z. Huang, S. Sun, B. Yu, U. Evariste, G. Jiang, J. Yao, Journal of Alloys and Compounds 2018, 762, 301.
- [20] L. Huang, H. Hou, B. Liu, K. Zeinu, X. Zhu, X. Yuan, X. He, L. Wu, J. Hu, J. Yang, *Applied Surface Science* 2017, 425, 879.