Supporting Information

Single Mo atoms paired with neighboring Ti atoms catalytically decompose ammonium bisulfate formed in low-temperature SCR

Junxiao Chen,^a Xue Fang,^a Zhouhong Ren,^b Weiye Qu,^a Xiaolei Hu,^a Zhen Ma,^{ac} Liwei Chen,^b Xi Liu,^{*b} Yaxin Chen,^{*a} and Xingfu Tang^{*acd}

^aDepartment of Environmental Science & Engineering, Fudan University, Shanghai, 200438, P. R. China. Email: tangxf@fudan.edu.cn; 16110740025@fudan.edu.cn. ^bSchool of Chemistry and Chemical, In-situ Center for Physical Science, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China. Email: liuxi@sjtu.edu.cn. ^cShanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P. R. China. ^dJiangsu Collaborative Innovation Centre of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, P.R. China

Figures and Tables

Samples	S / ppm	A / mL	yield / %
Mo ₁ /TiO ₂	1045	0.52	67
VWTi	936	0.47	60
MoO ₃	592	0.30	38
TiO ₂	390	0.20	25

Table R1 Relevant parameters from TPDC experiments

The corresponding total concentration of SO₂ (denoted as S) was obtained from TPDC experiments. Multiplying S by the flow rate (500 mL min⁻¹) can get the total release amount of SO₂ (denoted as A). Meanwhile, based on the loading of ABS (2%) and the mass of catalysts (0.2 g), the maximum release amount of SO₂ was calculated to be 0.78 mL, assuming that HSO₄⁻ is completely decomposed into SO₂. The corresponding yield of the produced SO₂ can be obtained by dividing A by 0.78 mL. The yields are 67%, 60%, 38% and 25% for Mo₁/TiO₂, VWTi, MoO₃ and TiO₂, respectively.

Fig. S1 Side view of structure model of Mo adatom on TiO_2 (101) plane from DFT calculation (a) together with that after removing an oxygen atom in MoO_5 motif (b). Light blue represents Ti atoms, red O atoms, green H atoms, and yellow Mo atoms.

Fig. S2 PDOS of Mo site (4d) and Ti site (3d) in Mo₁/TiO₂ (up) and Mo₁/TiO₂-R (down).

Fig. S3 XRD patterns of Mo_1/TiO_2 , MoO_3 and TiO_2 catalysts. No peaks corresponding to MoO_3 appear on the XRD pattern of Mo_1/TiO_2 , indicating a highly-dispersed state of Mo species on TiO_2 .

Fig. S4 (a,b) TEM images of Mo_1/TiO_2 . No MoO_3 particles can been observed in the images of Mo_1/TiO_2 .

Fig. S5 (a) Atomic-resolution AC-STEM image of Mo_1/TiO_2 . (b) and (c) Normalized image intensities in sites b and c shown in (a), respectively.

Fig. S6 (a, b) Raman spectra of Mo₁/TiO₂, MoO₃, and TiO₂ catalysts.

Fig. S7 FT-IR spectra of ABS-deposited catalysts together with pure ABS. The characteristic peaks on the spectra of ABS-MoO₃ and pure ABS are nearly the same.

Fig. S8 SO_2 signal of pre-reduced Mo_1/TiO_2 with 2% ABS deposited during TPDC experiment.

Fig. S9 SO₂ signal of (a) pre-reduced MoO₃, (b) pre-reduced TiO₂, (c) V_2O_5 -WO₃/TiO₂ (VWTi) and (d) SiC with 2% ABS deposited as referenced samples during TPDC experiment. SiC processes nearly no redox property, so it was chosen to depict the pristine SO₂ release temperature of ABS.

Fig. S10 SO₂ signal as a function of time over ABS-deposited Mo_1/TiO_2 (a), MoO_3 (b), VWTi (c) and TiO_2 (d) during TPDC experiments.

Fig. S11 NO conversion as a function of time over Mo_1/TiO_2 catalyst. Conditions: 0.50 g catalyst, T = 260 °C, 500 ppm NH₃ = NO, 500 ppm SO₂, 5 vol.% H₂O, 3 vol.% O₂, N₂ balanced. The catalyst was per-treated for 10 hours to exclude the effect of surface acidification on the activity.

Fig. S12 (a) Mo 3*d*, (b) O 1*s* and (C) Ti 2*p* XPS of Mo₁/TiO₂ catalyst during different stages. On the process of NH_4^+ oxidation, Mo gains electrons and oxygen vacancies increase along with the formation of high-energy H_2O molecular. On the process of HSO_4^- reduction, electron was transferred from O to Ti and S, resulting in decrease of O vacancies and the release of SO₂. After re-oxidation process, electronic states of all elements go back to the pristine levels.

Fig. S13 SO_2 signal of a series of ABS-deposited pre-reduced MoO_3/TiO_2 catalysts with different MoO_3 loading during TPDC experiment.

Fig. S14 Onset temperature of the SO₂ release curves over ABS-deposited pre-reduced MoO₃/TiO₂ catalysts as a function of MoO₃ loading. Mo₁/TiO₂ corresponds to sample with 6 wt.% MoO₃ loading. At low loadings (Mo-Ti dual sites on surface), the SO₂ release temperatures are almost the same, which are located at ~ 225 °C, while at high loading (only MoO₃ on surface), the temperature all delay to ~260 °C.

Fig. S15 SO₂ signal of pre-reduced TiO₂/Mo₁/TiO₂ with 2% ABS deposited during TPDC experiment. After the coverage of TiO₂ on Mo single atoms, the onset of SO₂ release delays a lot.

Fig. S16 Onset temperature of the SO₂ release curves over ABS-deposited pre-reduced MoO_3/TiO_2 (40 wt.% MoO_3 loading), Mo_1/TiO_2 , and $TiO_2/Mo_1/TiO_2$ catalysts. When MoO_3 or TiO_2 mainly exposed on the surface, the onset of the SO₂ release delays a lot compared with that of MoO_3/TiO_2 .