Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

## **SUPPORTING INFORMATION**

## Single-atom catalysts on supported silicomolybdic acid for CO<sub>2</sub> electroreduction: a DFT prediction

Congcong Zhao,<sup>a</sup> Xiaofang Su,<sup>b</sup> Shuo Wang,<sup>a</sup> Yu Tian,<sup>c</sup>

Likai Yan,\*a Zhongmin Su<sup>a</sup>

<sup>a</sup> Institute of Functional Material Chemistry, Key Laboratory of Polyoxometalate

Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University,

Changchun 130024, P. R. China

<sup>b</sup> Henan Normal University, Henan 453007, P. R. China

<sup>c</sup> Institute for Interdisciplinary Quantum Information Technology, Jilin Engineering

Normal University, Changchun 130052, P. R. China

\* To whom correspondence should be addressed. *E-mail:* yanlk924@nenu.edu.cn.

## Surface Pourbaix diagrams calculation

The oxidation mechanism of the catalyst by OH\* and O\* is as follows:

$$H_2O + * \rightarrow OH^* + H^+ + e^- (S1)$$
$$OH^* \rightarrow O^* + H^+ + e^- (S2)$$

where \* represents the catalyst surface. OH\* and O\* are hydroxide and oxygen adsorbed on catalyst surface, respectively.

According to the computational hydrogen electrode model proposed by Nørskov et al.

$$H^{+} + e^{-} = 1/2H_{2}(g)(S3)$$

At given pH and potential, the free energy of reaction (S3) is:

$$\Delta G = eU + k_B T \ln 10 pH (S4)$$

Equation (S1) and (S2), which include the pH and potential, can be written as,

$$\Delta G(OH^*) = G(OH^*) - G(^*) - G(H_2O) + 1/2G(H_2) - \Delta G (S5)$$
$$\Delta G(O^*) = G(O^*) - G(^*) - G(H_2O) + G(H_2) - 2\Delta G (S6)$$



**Fig. S1** Charge density difference of  $Na_4SiMo_{12}$  adsorbed on graphene, with isosurface level of 0.002 e/Å<sup>3</sup>. The cyan and yellow regions represent electron depletion and accumulation, respectively.



**Fig. S2** Optimized configurations of TM (TM = Sc and Y) on Na<sub>4</sub>SiMo<sub>12</sub> with TM initially located in 4–H, 3–H\_O<sub>t</sub>, 3–H\_O<sub>b</sub>, and O<sub>c</sub>–O<sub>b</sub>–bridge, respectively. The values in the figure represent the adsorption energies ( $E_{ads}$ ) of transition metals anchored at different sites of Na<sub>4</sub>SiMo<sub>12</sub>.



Fig. S3 Variations of temperature and energy against time for AIMD simulation of  $Na_4SiMo_{12}$ , and the insets show top and side views of the snapshot of the atomic configuration. The simulation is run at 500 K for 10 ps with a time step of 1 fs.



**Fig. S4** Charge density difference of CO<sub>2</sub> adsorption over TM@Na<sub>4</sub>SiMo<sub>12</sub> (TM = Sc, Ti, V, Cr, Mn, Zn, Y, Zr, Nb and Cd), with isosurface level of 0.005 e/Å<sup>3</sup>. The cyan and yellow regions represent electron depletion and accumulation, respectively. The values in the figure represent the adsorption energies ( $E_{ads}$ ) of CO<sub>2</sub> anchored at TM@Na<sub>4</sub>SiMo<sub>12</sub> and the amount of charge transferred from the TM@Na<sub>4</sub>SiMo<sub>12</sub> to CO<sub>2</sub>.



Fig. S5 (a) The charge density difference of Cr anchor on the Na<sub>4</sub>SiMo<sub>12</sub>, with isosurface level of 0.005 e/Å<sup>3</sup>. The cyan and yellow regions represent electron depletion and accumulation, respectively. (b) The partial density of states (PDOS) of Cr anchor on the Na<sub>4</sub>SiMo<sub>12</sub>. The Fermi level is zero.



Fig. S6 The optimized  $CO_2RR$  intermediates along the most favorable pathway on  $TM@Na_4SiMo_{12}$  (TM = Sc, Cr, Mn, Ti and V).



Fig. S7 The relationship of calculated ICOHP values of the TM–O bond and the  $\Delta G$  of CO<sub>2</sub> to HCOO\* on TM@Na<sub>4</sub>SiMo<sub>12</sub> (TM = Sc, Cr, Mn, Ti and V).



Fig. S8 The relationship between the adsorption energies ( $E_{ads}$ ) of CO<sub>2</sub> and the Bader charges of TMs anchored on the TM@Na<sub>4</sub>SiMo<sub>12</sub> (TM = Sc, Cr, Mn, Ti and V).



Fig. S9 Surface Pourbaix diagrams of  $TMs@Na_4SiMo_{12}$  (TM = Sc, Cr, Mn, Ti and V).

| Metal | $\mu_{TM} \left( eV \right)$ | $E_{\rm ads}(eV)$ |
|-------|------------------------------|-------------------|
| Sc    | -6.30                        | -5.18             |
| Ti    | -8.05                        | -3.29             |
| V     | -8.92                        | -1.90             |
| Cr    | -9.46                        | -1.31             |
| Mn    | -9.38                        | -0.91             |
| Fe    | -8.23                        | 0.15              |
| Co    | -7.27                        | 1.10              |
| Ni    | -5.47                        | 0.55              |
| Cu    | -3.73                        | 0.82              |
| Zn    | -1.04                        | -0.64             |
| Y     | -6.55                        | -5.35             |
| Zr    | -8.67                        | -6.03             |
| Nb    | -10.09                       | -1.61             |
| Mo    | -10.92                       | 0.47              |
| Tc    | -10.41                       | 1.35              |
| Ru    | -9.70                        | 2.83              |
| Rh    | -7.27                        | 2.53              |
| Pd    | -5.21                        | 1.78              |
| Ag    | -2.71                        | 0.55              |
| Cd    | -0.66                        | -0.40             |

**Table S1** The chemical potential of TM atom calculated from the metal bulk, and thecorresponding adsorption energy ( $E_{ads}$ ).

| Metal | Bader charge (eV) | Pt–O bond length (Å)   |
|-------|-------------------|------------------------|
| Sc    | 1.93              | 2.05, 1.95, 2.05, 1.95 |
| Ti    | 1.84              | 1.93, 1.85, 1.93, 1.86 |
| V     | 1.58              | 1.91, 1.86, 1.91, 1.86 |
| Cr    | 1.45              | 1.96, 1.82, 1.96, 1.82 |
| Mn    | 1.35              | 1.89, 1.85, 1.89, 1.85 |
| Zn    | 1.21              | 2.09, 1.98, 2.09, 1.99 |
| Y     | 2.08              | 2.07, 1.99, 2.07, 1.98 |
| Zr    | 2.39              | 2.03, 1.95, 2.03, 1.94 |
| Nb    | 2.09              | 1.98, 1.94, 1.98, 1.93 |
| Cd    | 1.48              | 1.96, 1.81, 1.96, 1.82 |

**Table S2** The Bader charge of TMs and TM–O bond lengths for TM@Na<sub>4</sub>SiMo<sub>12</sub>(TM = Sc, Ii, V, Cr, Mn, Zn, Y, Zr, Nb and Cd).

|     | Elementary steps                                                                     | Sc    | Cr    | Mn    | Y     | Zr    | Nb    |
|-----|--------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|
| 1e- | $\rm CO_2 + e^- + H^+ \rightarrow \rm COOH^*$                                        | 1.07  | 0.79  | 1.10  | 1.08  | 0.15  | -0.36 |
|     | $\rm CO_2 + e^- + H^+ \rightarrow \rm HCOO^*$                                        | -0.46 | 0.22  | 0.48  | -0.61 | -1.37 | -1.55 |
| 2e- | $\mathrm{HCOO}^{*} + \mathrm{e}^{-} + \mathrm{H}^{+} \rightarrow \mathrm{HCOOH}^{*}$ | 0.46  | 0.23  | 0.10  | 0.82  | 1.17  | 1.26  |
|     | $\mathrm{HCOOH}^* \rightarrow \mathrm{HCOOH}(\mathrm{l}) + ^*$                       | 0.43  | -0.03 | -0.15 | 0.22  | 0.63  | 0.72  |
| 3e- | $\rm HCOOH^{*} + e^{-} + H^{+} \rightarrow \rm HCO^{*} + \rm H_{2}O$                 | 1.37  | 0.38  | 0.48  | 1.22  | 0.62  | 0.15  |

|     | Elementary steps                                                                                                                                       | Ti    | V     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 1e- | $\rm CO_2 + e^- + H^+ \rightarrow \rm COOH^*$                                                                                                          | 0.44  | 0.17  |
|     | $\rm CO_2 + e^- + H^+ \rightarrow \rm HCOO^*$                                                                                                          | -0.81 | -0.67 |
| 2e- | $\text{HCOO}* + e^- + \text{H}^+ \rightarrow \text{HCOOH}*$                                                                                            | 0.47  | 0.59  |
|     | $\mathrm{HCOOH}^* \rightarrow \mathrm{HCOOH}(\mathrm{l}) + ^*$                                                                                         | 0.77  | 0.52  |
| 3e- | $\rm HCOOH^{*} + e^{-} + H^{+} \rightarrow \rm HCO^{*} + \rm H_{2}O$                                                                                   | 0.70  | 0.47  |
| 4e- | $\mathrm{HCO}^{*} + \mathrm{e}^{-} + \mathrm{H}^{+} \rightarrow \mathrm{CH}_{2}\mathrm{O}^{*}$                                                         | -0.97 | -0.65 |
|     | $\text{HCO}^* + e^- + \text{H}^+ \rightarrow \text{CHOH}^*$                                                                                            | 0.79  | 0.47  |
| 5e- | $CH_2O^* + e^- + H^+ \rightarrow CH_3O^*$                                                                                                              | 1.68  | -1.17 |
|     | $CH_2O^* + e^- + H^+ \rightarrow CH_2OH^*$                                                                                                             | 0.54  | 0.16  |
| 6e- | $CH_2OH^* + e^- + H^+ \rightarrow CH_3OH^*$                                                                                                            | -0.72 |       |
|     | $\mathrm{CH_2OH}^{\color{black}{*}} + \mathrm{e^-} + \mathrm{H^+} {\color{black}{\rightarrow}} \mathrm{CH_2}^{\color{black}{*}} + \mathrm{H_2O}$       | 0.72  |       |
|     | $CH_3O^* + e^- + H^+ \rightarrow CH_3OH^*$                                                                                                             |       | 0.85  |
|     | $CH_3OH^* \rightarrow CH_3OH(g) + *$                                                                                                                   | 0.96  | 0.75  |
|     | $CH_3O^* + e^- + H^+ \rightarrow CH_4 + O^*$                                                                                                           |       | -0.76 |
| 7e- | $\mathrm{CH_3OH}^{\color{black}{*}} + \mathrm{e}^{-} \mathrm{+} \mathrm{H}^{+} \! \rightarrow \mathrm{CH_4} \mathrm{+} \mathrm{OH}^{\color{black}{*}}$ | -1.64 | -1.83 |
|     | $O^* + e^- + H^+ \rightarrow OH^*$                                                                                                                     |       | -0.21 |
| 8e- | $OH^* + e^- + H^+ \rightarrow H_2O^*$                                                                                                                  | 0.69  | 0.74  |
|     | $H_2O^* \rightarrow H_2O(l) + *$                                                                                                                       | 0.73  | 0.66  |

**Table S3** Calculated free energy changes (in eV) for  $CO_2RR$  on  $TM@Na_4SiMo_{12}$ (TM = Sc, Cr, Mn, Y, Zr, Ti and V)