Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supplementary Material

Atomically dispersed NiN₄-Cl active site with axial Ni-Cl coordination for accelerating electrocatalytic hydrogen evolution

Min Li^a, Minmin Wang^a, Dongyuan Liu^b, Yuan Pan^{a,*}, Shoujie Liu^c, Kaian Sun^a, Yanju Chen^a, Houyu Zhu^{b,*}, Wenyue Guo^b, Yanpeng Li^a, Zhiming Cui^d, Bin Liu^a, Yunqi Liu^a, Chenguang Liu^a

^aState Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China

^bSchool of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China

°College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China

^dKey Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou, 510641, China

*Corresponding Author. E-mail: panyuan@upc.edu.cn (Y. Pan); hyzhu@upc.edu.cn (H. Zhu)

Fig. S1 Preparation process diagram of (a) $\rm Ni_{(I)}\,SAs/N-C$, (b) $\rm NiN_4\,SAs/N-C$.

Fig. S2 (a) XRD pattern, (b) Raman diagram of Ni_(I) SAs/N-C, NiN₄ SAs/N-C and NiNi₄-Cl SAs/N-C.

Fig. S3 (a) SEM, (b) TEM, (c) EDS mapping of NiN_4 SAs/N-C.

Fig. S4 BET analysis of Ni₍₁₎ SAs/N-C, NiN₄ SAs/N-C (a) N₂ absorption/desorption curve, (b, c) Aperture distribution curve.

Fi. S5 XPS spectra of $Ni_{(I)}$ SAs/N-C, NiN_4 SAs/N-C and NiN_4 -Cl SAs/N-C (a) Survey, (b) Ni 2p, (c) N 1s, (d) C 1s.

Fig. S6 (a) C K-edge XANES spectrum, (b) N K-edge XANES spectrum of NiN₄-Cl SAs/N-C, (c) C K-edge XANES spectrum, (d) N K-edge XANES spectrum of NiN₄ SAs/N-C.

Fig. S7 CV curves of (a) Ni $_{(1)}$ SAs/N-C, (b) NiN₄ SAs/N-C, (c) NiN₄-Cl SAs/N-C in 1 M KOH, (d) C_{dl} diagram.

Fig. S8 CV curves of (a) Ni $_{(1)}$ SAs/N-C, (b) NiN $_4$ SAs/N-C, (c) NiN $_4$ -Cl SAs/N-C in 0.5 M H $_2$ SO $_{4,}$ (d) C $_{d1}$ diagram.

Fig. S9 EIS curves in (a) 1 M KOH (b) 0.5 M H₂SO₄ of Ni₍₁₎ SAs/N-C, NiN₄ SAs/N-C, NiN₄-Cl SAs/N-C and NC catalysts.

Fig. S10 (a) SEM, (b) TEM, (c) EDS mapping of NiN₄-Cl SAs/N-C after stability test of 24 h.

Fig. S11 XPS spectra of NiN₄-Cl SAs/N-C after stability test of 24 h (a) Cl 2p, (b) N 1s, (c) C 1s.

Fig. S12 Model: the pyridinic_NiN₄ supported on optimized isolated graphene substrate substituted by one C and three N

atoms (pyrrolic Cl-N₃, named as NiN₄-Cl/N-C).

Fig. S13 The intermediate structures involved in the Volmer-Heyrovsky mechanism on (a) pyridinic_NiN₄, (b) NiN₄-Cl/N-C and

(c) pyridinic_NiN₄-Cl.

Catalysts	Element	Atomic (%)
Ni ₍₁₎ SAs/N-C	Ni	0.48
NiN ₄ SAs/N-C	Ni	1.38
NiN₄-Cl SAs/N-C	Ni	1.37

 $\textbf{Table S1} \ \text{The ICP element content data of of Ni}_{(I)} \ \text{SAs/N-C, NiN}_4 \ \text{SAs/N-C and NiN}_4 - CI \ \text{SAs/N-C.}$

Catalysts	BET Surface Area (m²/g)	Pore Volume (cm³/g)	Pore Size (nm)
Ni _(I) SAs/N-C	475.5	0.41	3.41
NiN₄ SAs/N-C	522.7	0.35	2.43
NiN₄-CI SAs/N-C	528.5	0.32	2.72

Table S2 BET analysis data of Ni $_{(1)}$ SAs/N-C, NiN $_4$ SAs/N-C and NiN $_4$ -Cl SAs/N-C.

Catalysts	Scattering pair	CN	R(Å)	$\sigma^2~(10^{\cdot3} \mathring{A}^2)$	E ₀ (eV)	R factor
NiN₄ SAs/N-C	Ni-N	4.1	1.81	4.9	-8.4	
NiN4-CI SAs/N-C	Ni-N	4.2	1.85	5.1	-8.3	0.02
	Ni-Cl	1.0	2.34	6.4	-8.3	

Table S3 Structural parameters fitted by EXAFS (S_0^2 =0.85) of NiN₄ SAs/N-C and NiN₄-Cl SAs/N-C.

Catalysts	C _{dl} (mF⋅cm ⁻²)	C _s (mF·cm ⁻² per·cm ²)	ECSA (cm ⁻²)
NC	1.7	0.04	42.5
Ni ₍₁₎ SAs/N-C	4.3	0.04	107.5
NiN ₄ SAs/N-C	22.5	0.04	562.5
NiN ₄ -Cl SAs/N-C	27.3	0.04	682.5

Table S4 The calculated values of ECSA of all catalysts in 1 M KOH.

Catalysts	C _{dl} (mF⋅cm ⁻²)	C _s (mF·cm ⁻² per·cm ²)	ECSA (cm ⁻²)
NC	1.2	0.035	30.0
Ni _(I) SAs/N-C	3.6	0.035	90.0
NiN ₄ SAs/N-C	20.5	0.035	512.5
NiN ₄ -Cl SAs/N-C	24.7	0.035	617.5

Table S5 The calculated values of ECSA of all catalysts in 0.5 M H_2SO_4 .

	Pyri	Pyridinic_NiN ₄		NiN ₄ –Cl/N-C		Pyridinic_NiN ₄ -Cl	
Atom	Clean surface	H* adsorption	Clean surface	H* adsorption	Clean surface	H* adsorption	
N1	-1.19	-0.67	-1.10	-1.09	-1.21	-0.68	
N ₂	-1.22	-0.68	-1.10	-1.09	-1.05	-0.69	
N ₃	-1.16	-0.60	-1.20	-1.16	-1.04	-0.69	
N ₄	-1.14	-0.59	-1.20	-1.16	-1.20	-0.67	
Ni	0.87	0.59	0.84	0.79	0.96	0.61	
н	-	-0.14	-	-0.10	-	0.04	
Cl	-	-	0.19	0.19	-0.59	-0.53	

 Table S6 Calculated Bader charges of relative atoms on Pyridinic_NiN4, NiN4-Cl/N-C and Pyridinic_NiN4-Cl.