Atomic Co-N₄ and Co nanoparticles confined in COF@ZIF-67 derived

core-shell carbon frameworks: Bifunctional non-precious metal

catalysts toward ORR and HER

Minghao Liu,^{ab} Qing Xu,^{ac*} Qiyang Miao,^{ad} Shuai Yang,^e Ping Wu,ab Guojuan Liu,^{ab} Jun He,^b Chengbing Yu,^{d*} and Gaofeng Zeng ^{ac*}

Experimental section

Materials: 2-Methylimidazole were purchased from Aladdin. 2,4,6-Trihydroxybenzene-1,3,5-tricarbaldehyde (TP) and 2,2'-bipyridine-5,5'-diamine (BPY) were purchased from Alfa. Cobalt nitrate hexahydrate, methanol (MeOH), tetrahydrofuran (THF), ethanol (EtOH) and potassium hydroxide (KOH) were from Sinopharm Chemical Reagent Co.,Ltd.

Catalyst preparation: In a typical synthesis of ZIF-67, 4 mmol 2-methylimidazole and 1 mmol cobalt nitrate hexahydrate were dissolved in 25 mL MeOH, respectively, which were mixed and stirred at 25 °C for 24 hours to obtain purple solid. The ZIF-67 solid was washed with MeOH and THF in sequence and then dried in vacuum. For the synthesis of COF@ZIF, 63 mg of TP in 50 mL THF and 83.7 mg of BPY in 50 mL THF were added into the mixture of ZIF-67 (500 mg) and THF (200 mL), which were then sonicated for 30 minutes and stirred at 25 °C for 24 hours to obtain ZIF-67-supported TP-BPY-COF (named as COF@ZIF). The collected COF@ZIF was washed with MeOH and THF in sequence and then dried in vacuum with the yield of 81% TP-BPY-COF. The asprepared ZIF-67 and COF@ZIF were heated to 800 °C with a rate of 5 °C min⁻¹ and kept for 1 hour in N₂ to yield ZIF₈₀₀ and COF@ZIF₈₀₀, repectively.

Electrochemical performance tests: The COF@ZIF₈₀₀ catalyst (5 mg) was ultrasonic dispersed in a Nafion ethanol solution (0.25 wt.%, 500 μ L) for 2 h to yield a homogeneous ink. The catalyst ink (12 μ L) was pipetted onto a glassy carbon electrode $(d = 5.00 \text{ mm}, S = 0.196 \text{ cm}^2)$ with a loading amount of 0.6 mg cm⁻². The commercial Pt/C catalyst (20 wt.% platinum on carbon black, BASF) was employed as a reference. The Pt/C catalyst ink and electrode were prepared by the same conditions to that of COF@ZIF₈₀₀. All the electrochemical measurements were conducted in a conventional three-electrode cell using the electrochemical workstation (Pine Research Instrumentation, USA) at room temperature. The Ag/AgCl (3 M KCl) and platinum wire were used as reference and counter electrodes, respectively. A rotating ring disk electrode (RRDE) with a Pt ring and a glassy carbon disk served as the substrate for the working electrode for evaluating the ORR activity and selectivity of various catalysts. The electrochemical experiments were conducted in O₂ saturated aqueous solution of KOH (0.1 M) for ORR and in N_2 saturated aqueous solution of KOH (1.0 M) for HER, respectively. The RRDE measurements were conducted at a rotation rate of 1600 rpm with a sweep rate of 10 mV s⁻¹. On the basis of ring and disk currents, the electron-transfer number (n) and four-electron selectivity of catalysts based on the H_2O_2 yield (H_2O_2 %) were calculated from the equations of n = 4 $I_D/(I_R/N)$ + I_D and H_2O_2 $\% = 200 (I_R/N)/(I_R/N) + I_D$, where I_D and I_R are the disk and ring currents, respectively, and the ring collection efficiency N is 0.37. The Tafel slope was estimated by linear fitting of the polarization curves according to the Tafel equation (h = $b \times \log i$ + a, where *j* is the current density and b is the Tafel slope). For the cyclic voltammetry (CV) tests, the potential range was circularly scanned between 0.15 and 1.1 V at a scan rate of 50 mV s⁻¹ after purging O₂ gas for 30 min. To estimate the double layer capacitance, the electrolyte was deaerated by bubbling with nitrogen, and then the voltammogram was evaluated again in the deaerated electrolyte.

Characterization: Powder X-ray diffraction (PXRD) data were recorded on an Ultima IV diffractometer with Cu K α radiation by depositing powder on glass substrate, from $2\vartheta = 1.5^{\circ}$ up to 60° with 0.02° increment. Nitrogen sorption isotherms were measured at 77 K with a TriStar II, Micromeritics. The Brunauer-Emmett-Teller (BET) method was utilized to calculate the specific surface areas. By using the non-local density functional theory (NLDFT) model, the pore volume was derived from the sorption curve. X-ray photoelectron spectroscopy (XPS) measurements were carried out on a Thermo Scientific K-Alpha XPS spectrometer using Al K α X-ray source for radiation. Raman spectra were obtained from a Bruker SEN TERRA spectrometer employing a semiconductor laser ($\lambda = 532$ nm). High-resolution transmission electron microscope images were obtained by transmission electron microscopy (TEM, FEI Tecnai G2) installed with energy dispersive spectrometer (EDS, Oxford). The morphology was measured by a scanning electron microscope (SEM, Zeiss SUPRA 55 SAPPHIRE).

Figure S1. SEM images of ZIF-67.

Figure S2. SEM images of COF@ZIF.

Figure S3. FT IR spectra of ZIF-67 (green) and COF@ZIF (red).

Figure S4. XPS spectra of ZIF-67 and COF@ZIF.

Figure S5. TEM images of COF@ZIF.

Temperature (°C) Figure S6. TGA profiles for ZIF-67 (blue curves) and COF@ZIF (red curve) from 25 to 900 °C under N₂.

Figure S7. PXRD patterns of ZIF_{800} (blue), COF@ZIF₈₀₀ (red) and the standard of Co (black, PDF#15-0806).

Figure S8. Raman spectra of ZIF_{800} (blue) and $COF@ZIF_{800}$ (red).

Figure S9. XPS spectra of ZIF_{800} (blue curve) and COF@ ZIF_{800} (red curve).

Figure S10. SEM images of ZIF_{800} .

Figure S11. TEM images of ZIF_{800} .

Figure S12. SEM images of COF@ZIF₈₀₀.

Figure S13. TEM images of COF@ZIF₈₀₀.

Figure S14. EDX mapping of ZIF_{800} .

Figure S16. LSV curves for COF@ZIF $_{800}$ at different scan rate.

Figure S17. Long-term stability test of COF@ZIF_{800} at 0.6 V vs RHE for 20 h.

Figure S18. The EIS plots for COF@ZIF $_{800}$ (red curves) and ZIF $_{800}$ (black curves).

Figure S19. The diagram of EIS simulation circuit for COF@ZIF_{800} and ZIF_{800}.

COF@ZIF₈₀₀.

Figure S21. High-resolution HAADF-STEM images of COF@ZIF₈₀₀.

Figure S22. (A) X-ray absorption near-edge structure (XANES) spectra and (B) Fourier transformed k3-weighted χ (k)-function of the EXAFS spectra for ZIF₈₀₀ (red) and Co foil (black) K-edge. (C) EXAFS fitting curve for Co in ZIF₈₀₀.

3. Tables

Table S1. Summary of electrocatalysts for ORR in 0.1 M KOH.

Catalysts	Eonset	E _{1/2}	Tafel slope	Ref.
	(V vs. RHE)	(V vs. RHE)	(mV dec ⁻¹)	
COF@ZIF ₈₀₀	0.99	0.85	44	This work
Co-NC@600	0.94	0.83	66.5	1
Co ₂ P/CoN-NCNTs	0.96	0.85	49	2
CoTBrPP@bio-C	0.93	0.85	55	3
Co-NC@CC	0.94	0.81	76	4
$Co-N_3C_1@GC$	0.904	0.824	46	5
GC@COF-NC _{0.08}	0.923	0.841	78.4	6
W ₂ N/WC	0.93	0.81	58.13	7
FeP/Fe2O3@NPCA	0.95	0.838	88	8
Co/N-C(PA)	0.95	0.845	63	9
Co-SAs@NC	0.96	0.82	-	10
CAN-Pc(Fe/Co)	0.95	0.84	54	11
L-CCNTs-Co-800	0.90	0.84	54	12
CoNi@NCNT/NF	0.97	0.87	-	13
CoO _x NPs/BNG	0.95	0.805	57	14
Co-C ₃ N ₄ /CNT	0.90	0.85	68.4	15
cal-CoZIF-VXC72	0.92	0.84	45	16

Catalysts	J _{kin} at 0.9 V	J _{kin} at 0.85 V	J _{kin} at 0.8 V
COF@ZIF ₈₀₀	0.96	3.01	10.56
Pt/C	0.91	2.56	7.18

Table S2. The kinetic current densities (J_{kin}) for COF@ZIF_{800} and Pt/C at different potentials in 0.1 M KOH.

Catalysts	Overpotential	Tafel slope	Ref.
	@ J ₁₀ / mV	(mV dec ⁻¹)	
COF@ZIF ₈₀₀	159	92	This work
CoTBrPP@bio-C	220	80	3
C-CoP	173	71.1	17
Co- Fe-B-P	173	96	18
Cu _{0.3} Co _{2.7} P/NC	220	122	19
FeP NPs@NPC	214	82	20
W ₂ N/WC	148.5	47.4	7
O-Co ₂ P	160	61.1	21
NiCoP/rGO	209	124	22
Co/CoP	253	78.8	23
CoP/CC	209	129	24
Co-Ni ₃ N	194	150	25
Hollow Co ₃ O ₄ Microtube Arrays	190	90	26
Cu _{0.3} Co _{2.7} /NC-ZIFs	220	122	27
Co ₉ S ₈ @NOSC	320	105	28
Co _{0.85} Se/NiFe-LDH	320	160	29
NiCo ₂ S ₄ NW/NF	210	50.9	30

Table S3. Summar	y of electrocatal	ysts for HER in 1 M KOH.
------------------	-------------------	--------------------------

	0 01					
Sample	shell	Ν	R (Å)	$\Delta E_0 (eV)$	σ²(10 ⁻³ Ų)	R-factor
Co-foil	Co-Co	12	2.49	8.4	6.3	0.001
COF@ZIF ₈₀₀	Co-N	0.7	2.10	14.3	6.8	0.004
	Co-Co	8.4	2.49	8.7	6.4	
ZIF ₈₀₀	Co-Co	8.5	2.50	8.5	7.8	0.006

Table S4. Co K-edge fitting parameters.

N, coordination numbers; R, the internal atomic distance; σ^2 , Debye-Waller factor; ΔE_0 , the edge-energy shift.

COF@ZIF ₈₀₀	Element	Value	ZIF ₈₀₀	Element	Value
	R1	42.28		R1	43.2
	CPE1-T	0.000271		CPE1-T	0.00041283
	CPE1-P	0.28783		CPE1-P	0.5657
	R2	42.18		R2	83.2
	W1-R	378.1		W1-R	2313
	W1-T	2.031		W1-T	0.24422
	W1-P	0.55611		W1-P	0.5968

Table S5. The relevant parameters about EIS simulation circuit for COF@ZIF_{800} and ZIF_{800}.

References

- 1. S. Roy, S. Mari, M.K. Sai, S.C. Sarma, S. Sarkar, S.C. Peter, *Nanoscale*, 2020, **12**, 22718-22734.
- 2. Y. Guo, P. Yuan, J. Zhang, H. Xia, F. Cheng, M. Zhou, J. Li, Y. Qiao, S. Mu, Q. Xu, *Adv. Funct. Mater.*, 2018, **28**, 1805641.
- 3. X. Lv, Y. Chen, Y. Wu, H. Wang, X. Wang, C. Wei, Z. Xiao, G. Yang, J. Jiang, J. Mater. Chem. A, 2019, **7**, 27089-27098.
- Y. Zhong, Y. Lu, Z. Pan, J. Yang, G. Du, J. Chen, Q. Zhang, H. Zhou, J. Wang, C. Wang, W. Li, *Adv. Funct. Mater.*, 2021, **31**, 2009853.
- X. Hai, X. Zhao, N. Guo, C. Yao, C. Chen, W. Liu, Y. Du, H. Yan, J. Li, Z. Chen, X. Li,
 Z. Li, H. Xu, P. Lyu, J. Zhang, M. Lin, C. Su, S.J. Pennycook, C. Zhang, S. Xi, J. Lu,
 ACS Catal., 2020, 10, 5862-5870.
- S. Zhang, W. Xia, Q. Yang, Y. Valentino Kaneti, X. Xu, S.M. Alshehri, T. Ahamad, M.S.A. Hossain, J. Na, J. Tang, Y. Yamauchi, *Chem. Eng. J.*, 2020, **396**, 125154.
- 7. J. Diao, Y. Qiu, S. Liu, W. Wang, K. Chen, H. Li, W. Yuan, Y. Qu, X. Guo, *Adv. Mater.*, 2020, **32**, 1905679.
- 8. K. Wu, L. Zhang, Y. Yuan, L. Zhong, Z. Chen, X. Chi, H. Lu, Z. Chen, R. Zou, T. Li, C. Jiang, Y. Chen, X. Peng, J. Lu, *Adv. Mater.*, 2020, **32**, 2002292.
- J. Du, G. Wu, K. Liang, J. Yang, Y. Zhang, Y. Lin, X. Zheng, Z.Q. Yu, Y. Wu, X. Hong, Small, 2021, 17, 2007264.
- 10. X. Han, X. Ling, Y. Wang, T. Ma, C. Zhong, W. Hu, Y. Deng, *Angew. Chem. Int. Ed.*, 2019, **58**,5359-5364.
- 11. S. Yang, Y. Yu, M. Dou, Z. Zhang, L. Dai, F. Wang, *Angew. Chem. Int. Ed.*, 2019, **58**, 14724-14730.
- 12. Z. Liang, X. Fan, H. Lei, J. Qi, Y. Li, J. Gao, M. Huo, H. Yuan, W. Zhang, H. Lin, H. Zheng, R. Cao, *Angew. Chem. Int. Ed.*, 2018, **57**, 13187-13191.
- 13. W. Niu, S. Pakhira, K. Marcus, Z. Li, J.L. Mendoza-Cortes, Y. Yang, *Adv. Energy Mater.*, 2018, **8**, 1800480.
- 14. Y. Tong, P. Chen, T. Zhou, K. Xu, W. Chu, C. Wu, Y. Xie, *Angew. Chem. Int. Ed.*, 2017, **56**, 7121-7125.
- 15. Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, L.H. Li, Y. Han, Y. Chen, S.Z. Qiao, J. Am. Chem. Soc., 2017, **139**, 3336-3339.
- 16. B. Ni, C. Ouyang, X. Xu, J. Zhuang, X. Wang, Adv. Mater., 2017, 29, 1701354.
- 17. W. Li, G. Cheng, M. Sun, Z. Wu, G. Liu, D. Su, B. Lan, S. Mai, L. Chen, L. Yu, *Nanoscale*, 2019, **11**, 17084-17092.
- 18. Z. Wu, D. Nie, M. Song, T. Jiao, G. Fu, X. Liu, Nanoscale, 2019, 11, 7506-7512.
- 19. J. Song, C. Zhu, B.Z. Xu, S. Fu, M.H. Engelhard, R. Ye, D. Du, S.P. Beckman, Y. Lin, *Adv. Energy Mater.*, 2017, **7**, 1601555.
- 20. Z. Pu, I.S. Amiinu, C. Zhang, M. Wang, Z. Kou, S. Mu, *Nanoscale*, 2017, **9**, 3555-3560.
- 21. K. Xu, H. Ding, M. Zhang, M. Chen, Z. Hao, L. Zhang, C. Wu, Y. Xie, *Adv. Mater.*, 2017, **29**, 1606980.
- 22. J. Li, M. Yan, X. Zhou, Z.-Q. Huang, Z. Xia, C.R. Chang, Y. Ma, Y. Qu, *Adv. Funct. Mater.*, 2016, **26**, 6785-6796.

- 23. Z.H. Xue, H. Su, Q.Y. Yu, B. Zhang, H.H. Wang, X.-H. Li, J.S. Chen, *Adv. Energy Mater.*, 2017, **7**, 1602355.
- 24. J. Tian, Q. Liu, A.M. Asiri, X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- 25. C. Zhu, A.L. Wang, W. Xiao, D. Chao, X. Zhang, N.H. Tiep, S. Chen, J. Kang, X. Wang, J. Ding, J. Wang, H. Zhang, H.J. Fan, *Adv. Mater.*, 2018, **30**, e1705516.
- 26. Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, *Angew. Chem., Int. Ed.*, 2017, **56**, 1324-1328.
- 27. J. Song, C. Zhu, B.Z. Xu, S. Fu, M.H. Engelhard, R. Ye, D. Du, S.P. Beckman, Y. Lin, *Adv. Energy Mater.*, 2017, **7**, 1601555.
- 28. S. Huang, Y. Meng, S. He, A. Goswami, Q. Wu, J. Li, S. Tong, T. Asefa, M. Wu, *Adv. Funct. Mater.*, 2017, **27**, 1606585.
- 29. Y. Hou, M.R. Lohe, J. Zhang, S. Liu, X. Zhuang, X. Feng, *Energy Environ. Sci.*, 2016, **9**, 478-483.
- 30. A. Sivanantham, P. Ganesan, S. Shanmugam, *Adv. Funct. Mater.*, 2016, **26**, 4661-4672.