Supporting Information

CO₂-Selective Zeolitic Imidazolate Framework Membrane on Graphene Oxide Nanoribbons—Combined Experimental and Theoretical Studies

Eunji Choi^{‡,a}, Sung Jun Hong^{‡,a}, Junhe Chen^{‡,b}, Yeong Jae Kim^c, Yunkyu Choi^a, Ohchan Kwon^a, Kiwon Eum^c, Ji Il Choi^b, Seung Soon Jang^{*,b}, Byungchan Han^{*,a}, Dae Woo Kim^{*,a}

^a Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea

^b School of Materials Science and Engineering, Georgia Institute of Technology, 771, Ferst

Drive NW, Atlanta, 30332-0245, USA.

^c Department of Chemical Engineering, Soongsil University, Sangdo-ro 369, Dongjak-gu, Seoul 06978, Republic of Korea

‡ These authors contributed equally to this work.

E-mail:

seungsoon.jang@mse.gatech.edu (S.S.J.);

bchan@yonsei.ac.kr (B.H.);

audw1105@yonsei.ac.kr (D.W.K.)

Additional Experimental Section

Chemicals and materials: Zinc nitrate hexahydrate (Zn(NO₃)·6H₂O, 98%, Sigma-Aldrich) and 2-methylimidazole (99.0%, Sigma-Aldrich) were used as metal and ligand sources, respectively, to synthesize the ZIF-8 membranes. Multi-walled carbon nanotubes (MWCNTs, diameter = 15–25 nm, length = 20–100 μ m, 7–12 layers, JenoTube 20A, JEIO, South Korea), sulfuric acid (H₂SO₄, 98%, Daejung), potassium permanganate (KMnO₄, Extra pure, Duksan), and hydrogen peroxide (H₂O₂, 35%, Daejung) were used for the synthesis of graphene oxide nanoribbons (GONRs). All the chemicals were used as-purchased without further purification. **GONR preparation:** The GONRs were synthesized by a modified Hummer method wherein MWCNT powder (2 g) was added to 130 mL of H₂SO₄ solution, and 10.2 g of KMnO₄ was slowly added to the mixture. The MWCNT oxidation was maintained at 35 °C for 32 h in a water bath, and then 150 mL of deionized (DI) water was slowly added to the mixture in an ice bath. Then, 40 mL of H₂O₂ was added, and the solution containing the synthesized GONRs was vacuum filtered and repeatedly washed with DI water to remove any residual compounds such as H₂SO₄ solution, oxidizing chemicals, and potassium ions. The GONR solution was then prepared by dispersing the GONRs in 200 mL of DI water using a homogenizer.

Figure S1. Schematics illustrating the crystal growth of ZIF-8 on GONR layer.

Figure S2. (a) TEM images of GONR at low-magnification and at high-magnification. **(b)** XPS C1s spectra of MWCNT and GONR.

Figure S3. Cross-sectional SEM image of a GONR coated PES support.

Figure S4. (a) XRD pattern of ZIF-8 coated on alumina support. (b) and (c) Top and crosssectional SEM images of ZIF-8/alumina membrane.

Figure S5. CO_2/CH_4 gas separation performance of ZIF-8/GONR/PES membrane depending on the ratio of CO_2 in the feed gas. Transmembrane pressure and temperature were 1 bar and 25 °C, respectively.

Figure S6. CO_2/CH_4 separation performance of ZIF-8/alumina membrane—as a function of (a) temperature, (b) time, and (c) feed composition. Binary mixture of CO_2 and CH_4 was used at 1 bar and room temperature.

Figure S7. Calculated aperture size of ZIF-8 depending on isotropic tensile strain.

Figure S8. Calculated activation barrier of molecules depending on ZIF-8 aperture sizes.

Figure S9. Calculated charge density difference (isosurface: $6 \times 10^{-5} \text{ eV/Å}^3$) between the ZIF-8 cage and N₂/CO₂ and Bader charge analysis of CO₂/N₂/CH₄ interacting with ZIF-8 at the entrance of the pore. Cyan and yellow color represent charge depletion and accumulation, respectively. Silver, red, brown, and pink balls indicate N, O, C, and H respectively. The numbers in red and blue are the amount of charges gained and lost, as calculated from Bader charge analysis. The charge density difference ($\Delta \rho$) was calculated using the Equation S1:

$$\Delta \rho = \rho_{total} - \rho_{ZIF-8} - \rho_{gas} \tag{S1}$$

where ρ_{total} , ρ_{ZIF-8} , and ρ_{gas} , are the charge densities of the total system, ZIF-8, and gas molecule, respectively.

Table S1. Lennard—Jones parameters, r_0 and D for gas molecules and non-bonded molecular pairs from simulations.

Compound	r_{θ} (Å)	D (kcal/mol)	Compound	$r_{ heta}\left(\mathrm{\AA} ight)$	D (kcal/mol)
C (CO ₂)	3.519913	0.187534	Н(СН ₄)-Н3	2.97685467	0.01544798
O (CO ₂)	3.125550	0.186062	Н(СН ₄)-Н2	3.00085227	0.01509967
N(N ₂)	3.309574	0.154984	H(CH ₄)-C3	3.31285390	0.03861707
C(CH ₄)	3.812529	0.099672	H(CH ₄)-C1	3.31285390	0.03861707
H(CH ₄)	2.883993	0.020936	Н(СН ₄)-С2	3.39189132	0.04077843
$C(CO_2)-N(N_2)$	3.215568	0.102497	H(CH ₄)-N	3.79263659	0.05778014
$O(CO_2)-N(N_2)$	3.429603	0.122468	H(CH ₄)-Zn	2.66843185	0.01379913
C(CO ₂)-C(CH ₄)	3.557130	0.129992	С(СН ₄)-НЗ	3.28821216	0.03864026
C(CO ₂)-H(CH ₄)	2.896599	0.046990	С(СН ₄)-Н2	3.31471974	0.03776903
O(CO ₂)-C(CH ₄)	3.666833	0.160220	С(СН ₄)-СЗ	3.86429188	0.09558047
O(CO ₂)-H(CH ₄)	2.726822	0.046167	С(СН ₄)-С1	3.86429188	0.09558047
$C(CH_4)-N(N_2)$	3.649020	0.101186	С(СН ₄)-С2	3.65711792	0.10199971
H(CH ₄)-N(N ₂)	2.832492	0.093500	C(CH ₄)-N	4.12902779	0.12531556
C(CO ₂)-O(CO ₂)	3.022631	0.171421	C(CH ₄)-Zn	2.93560504	0.03449225
С(СН ₄)-Н(СН ₄)	3.048159	0.068338	С(СО ₂)-НЗ	2.94849594	0.02960892
			С(СО ₂)-Н2	3.43102185	0.02917225
			C(CO ₂)-C3	3.72380606	0.11335978
			C(CO ₂)-C1	3.72380606	0.11335978
			C(CO ₂)-C2	3.91830015	0.02734720
			C(CO ₂)-N	4.40854878	0.06916831
			C(CO ₂)-Zn	2.69014500	0.02650432
			O(CO ₂)-H3	3.08120783	0.05009166
			O(CO ₂)-H2	3.16588409	0.04896223
			O(CO ₂)-C3	3.53972292	0.11039137
			O(CO ₂)-C1	3.53972292	0.11039137
			O(CO ₂)-C2	4.09202254	0.03577925
			O(CO ₂)-N	4.53293364	0.04632141
			O(CO ₂)-Zn	2.77234970	0.04333821

N(N ₂)-H3	3.13235446	0.03439242
N(N ₂)-H2	3.34803467	0.07658586
N(N ₂)-C3	3.65907538	0.02365237
N(N ₂)-C1	3.65907538	0.02365237
N(N ₂)-C2	3.80576289	0.09541410
N(N ₂)-N	4.70312861	0.07912765
N(N ₂)-Zn	3.66664084	0.00366057

Table S2. Comparison of gas separation performances of ZIF-type membranes.

ZIF-type	CO_2 permeance (x 10 ⁻⁸ mol/m ² ·pa·s)	System (Single or mixture)	Selectivity	Reference
ZIF-8	72.91	Single	6.8	1

ZIF-90	10.6	Single	1.5	2
ZIF-8	0.734	Single	14.6	3
ZIF-8	12.2	Single	2.92	4
ZIF-8	2	Single	2.98	5
ZIF-8	14.0	Single	1.79	6
ZIF-8	4.45	Single	3.34	7
ZIF-8	0.41	Single	2.05	8
ZIF-8	1.33	Single	2.77	9
ZIF-90	3.5	Single	2.2	10
ZIF-93	0.077	Mixture	16.9	11
ZIF-67	1.27	Mixture	47.27	12
ZIF-8	0.154	Mixture	6.1	13
ZIF-90	ZIF-90 1.3		4.7	14
ZIF-8	0.8	Mixture	12.9	15
ZIF-69	10	Mixture	4.56	16
ZIF-8	3.44	Mixture	7.1	17

 Table S3. Self-diffusion coefficients of gas molecules in ZIF-8.

Self-diffusion coefficients (×10 ⁻⁵ cm ² /s)							
Aperture	Pure gas			Mixed gas			
size	CH_4	CO_2	N_2	$CH_4 + CO_2$	CO_2 + N_2	$CH_4 + N_2$	

3.6 Å 0.2025 0.3855 0.2751 0.1502 0.5435 0.6776 0.3712 0.2933 0.2913 4.0 Å 2.8645 1.2040 2.2410 2.8620 1.6710 1.8025 2.7070 2.2265 2.1183	3.3 Å	0.0119	0.1143	0.0725	0.0044	0.1275	0.0879	0.0507	0.0624	0.0763
	3.6 Å	0.2025	0.3855	0.2751	0.1502	0.5435	0.6776	0.3712	0.2933	0.2915
4.0 A 2.8045 1.2940 2.3410 5.8030 1.0/10 1.8055 2.7970 5.5305 2.1180	4.0 Å	2.8645	1.2940	2.3410	3.8630	1.6710	1.8035	2.7970	3.3365	2.1180

References

- 1. K. Tao, L. Cao, Y. Lin, C. Kong and L. Chen, J. Mater. Chem. A, 2013, 1, 13046
- A. J. Brown, J. R. Johnson, M. E. Lydon, W. J. Koros, C. W. Jones and S. Nair, *Angew. Chem.*, 2012, **124**, 10767-10770.
- Z. Y. Yeo, P. Y. Tan, S-P. Chai, P. W. Zhu and A. R. Mohamed, *RSC Adv.*, 2014, 4, 52461.
- 4. D. Liu, X. Ma, H. Xi and Y. S. Lin, J. Membr. Sci., 2014, 451, 85-93.
- 5. H. Bux, A. Feldhoff, J. Cravillon, M. Wiebcke, Y-S. Li and J. Caro, Chem. Mater., 2011, 23, 2262-2269.
- 6. Y. Pan and Z. Lai, Chem. Commun., 2011, 47, 10275-10277.
- M. C. McCarthy, V. Varela-Guerrero, G. V. Barnett and H-K. Jeong, *Langmuir*, 2010, 26, 14636-14641.
- O. Shekhah, R. Swaidan, Y. Belmabkhout, M. D. Plessis, T. Jacobs, L. J. Barbour, I. Pinnau and M. Eddaoudi, *Chem. Commun.*, 2014, 50, 2089.
- H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke and J. Caro, J. Am. Chem. Soc., 2009, 131, 16000-16001.
- 10. A. Huang, W. Dou and J. Caro, J. Am. Chem. Soc., 2010, 132, 15562-15564.

- F. Cacho-Bailo, G. Caro, M. Etxeberria-Benavides, O. Karvan, C. Téllez and J. Coronas, *Chem. Commun.*, 2015, **51**, 11283.
- 12. K. Sainath, A. Modi and J. Bellare, J. Membr. Sci., 2020, 614, 118506.
- F. Cacho-Bailo, S. Catalán-Aguirre, M. Etxeberría-Benavides, O. Karvan, V. Sebastian, C. Téllez and J. Coronas, J. Membr. Sci., 2015, 476, 277-285.
- A. Huang, Q. Liu, N. Wang and J. Caro, *Microporous Mesoporous Mater.*, 2014, 192, 18-22.
- Y. Liu, J. H. Pan, N. Wang, F. Steinbach, X. Liu and J. Caro, *Angew. Chem.*, 2015, 127, 3071-3075.
- 16. Y. Liu, G. Zeng, Y. Pan and Z. Lai, J. Membr. Sci., 2011, 379, 46-51.
- Y. Hu, J. Wei, Y. Liang, H. Zhang, X. Zhang, W. Shen and H. Wang, *Angew. Chem.*, 2016, **128**, 2088-2092.