Supplementary Information

Structural and electronic insight into the effect of indium doping on the photocatalytic performance of TiO₂ for CO₂ conversion

Patricia Reñones,¹ Fernando Fresno,^{1,} * Freddy E. Oropeza,¹ Giulio Gorni,² Víctor A. de la Peña O'Shea^{1,*}

¹ Photoactivated Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain.

² CELLS-ALBA Synchrotron, Carrer de la Llum 2-26, 08290 Cerdanyola del Valles, Barcelona, Spain.

* Corresponding authors. E-mails: fernando.fresno@imdea.org, victor.delapenya@imdea.org

Table S1. Results of EXAFS fit. N is the coordination number, R the bond-distance, σ^2 the Debye-Waller factor, ΔE_0 the inner potential correction. The amplitude reduction factor, S_0^2 , was fitted for In_2O_3 and its value of 0.91 fixed for all the samples. The * symbol indicates the parameters fixed during the fit.

Sample	Atom	N	R(Å)	σ² (10⁻³ Å)	ΔE₀ (eV)	R-factor
	0	6*	2.159±0.005 5.8±0.7			
In ₂ O ₃	In	6*	3.363±0.005	5.8±0.4	2.8±0.5	0.010
	In	6*	3.843±0.007 8.1±0.7			
In-TiO ₂ -1	0	6*	2.135±0.006	6.0±0.4	2.1±0.5	0.003
Ag/In-TiO ₂ -1	0	6*	2.14±0.01	6.0±0.6	2.4±0.8	0.004
In-TiO ₂ -5	0	6*	2.120±0.008	7.0±0.5	2.2±0.6	0.003
In-TiO ₂ -10	0	6*	2.127±0.009	7.0±0.6	1.2±0.8	0.0033

Ato	ms ¹	Stoichiometry $E_{In Ti} = 0$	Vacancy E_{Im} Ti O				
		$x^{r}x^{r}1 - x^{o}2$	$\frac{1}{x^{1}} \frac{1}{1} - x^{0} 2 - y$				
In1	01	2.204	2.0568				
ln1	02	2.204	2.1003				
In2	03	2.204	2.1514				
In2	04	2.204	2.1119				
Equatorial							
ln1	05	2.0141	1.9833				
ln1	O 6	2.0141	1.9833				
ln1	07	2.0141	2.0316				
ln1	08	2.0141	-				
In2	O9	2.0141 2.0046					
In2	010	2.0141	2.0149				
In2	011	2.0141	2.0866				
In2	012	2.0141	2.0866				

Table S2. DFT calculated In-O bonds for two possible structures, A) Stoichiometry and B) Vacancy.

¹Distances Oxygen nearest neighbouring (NN) Indium. In the case of $E_{In_x}Ti_{1-x}O_{2-y}$: In1: Close to O_v, In2: Opposite to O_v.

	PVF			Arctan			
Sample	Center	Area	FWHM	Center	Height	Width	R-factor
	(eV)	(arb. units)	(eV)	(eV)	(arb. units)	(eV)	
In ₂ O ₃	27952	6.3±0.1	10.8±0.2	27944	0.98	4.1	0.00020
In-TiO ₂ -1	27952	7.1±0.1	11.5±0.2	27944	0.98	4.1	0.00025
Ag/In-TiO ₂ -1	27952	7.2±0.2	11.6±0.2	27944	0.98	4.1	0.00022
In-TiO ₂ -5	27952	7.4±0.2	11.7±0.3	27944	0.98	4.1	0.00018
In-TiO ₂ -10	27952	6.7±0.1	11.5±0.2	27944	0.98	4.1	0.00017

Table S3. Results of XANES peak fitting. The parameters of arctan function were fitted for In_2O_3 and then fixed for the rest of samples.

Figure S1. Reaction system employed for photocatalytic CO₂ reduction tests [P: pressurized valve; FIC: flow indicator and controller; CEM: controlled evaporation and mixing unit; TIC: temperature indicator and controller; PIC: pressure indication and controller; GC: gas chromatograph].

Figure S2. Pawley refinement of X-ray diffractograms of Ag/In-TiO₂-1. Circles: experimental data; red line: fitting; grey line: background; blue line: experiential-simulation difference.

Figure S3. Raman spectra of the different In-doped TiO_2 catalysts.

Figure S4. Raman shift and bandwith of the first E_g vibrational mode of anatase in the different catalysts, against the reciprocal of crystal size.

Figure S5. Raman shift and bandwith of the first E_g vibrational mode of anatase in the different catalysts, against the indium content.

Figure S6. In K-edge first derivative spectra of synthesized-samples and references.

Figure S7. XANES data (black) and peak fitting (red) of synthesized samples with arctan (green) and pseudo Voigt function (blue). The dot grey line indicates the residual of peak fitting and data.

Figure S8. Projected density of states (PDOS) for In-doped anatase with stoichiometry structure: A) total, B) In-s; C) In-p; D) In-d, for all atoms.

Figure S9. Projected density of states (PDOS) of O 2p band for nearest neighbouring (NN) indium for In-doped anatase with stoichiometry structure: A) apical; B) equatorial and with vacancy; C) apical; D) equatorial. In1: blue; In2: red.

Figure S10. Fluorescence spectra of the synthesized catalysts.