Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

## Supporting Information

## Interfacial engineering of nickel/iron/ruthenium phosphides for efficient overall water splitting powered by solar energy

Sheng-Hao Cai, Xiao-Nan Chen, Meng-Jie Huang, Ji-Yuan Han, Yu-Wei Zhou, and Ji-Sen Li\*

Department of Chemistry and Chemical Engineering, Jining University, Qufu 273155, P. R. China. E-mail: senjili@sina.com



Fig. S1 Single cycle CV curves of Hg/HgO electrode calibration in 1.0 M KOH.



Fig. S2 PXRD patterns of NiFeRu-LDH.



Fig. S3 (a, b) SEM images of NiFeRu-LDH/NF.



Fig. S4 PXRD patterns of  $Ni_2P$ -Fe<sub>2</sub>P-Ru<sub>2</sub>P/NF.



Fig. S5 Contact angles of NF (a) and  $Ni_2P\mbox{-}Fe_2P\mbox{-}Ru_2P$  /NF (b).



Fig. S6 (a, b) SEM images of NiFe-LDH/NF.



Fig. S7 PXRD patterns of NiFe-LDH.



Fig. S8 (a, b) SEM images of  $Ni_2P$ -Fe<sub>2</sub>P/NF.



Fig. S9 PXRD patterns of  $Ni_2P$ -Fe<sub>2</sub>P/NF.



Fig. S10 The survey XPS spectrum for  $Ni_2P$ -Fe<sub>2</sub>P-Ru<sub>2</sub>P/NF.



**Fig. S11** CV curves of  $Ni_2P$ -Fe<sub>2</sub>P/NF (a) and  $Ni_2P$ -Fe<sub>2</sub>P-Ru<sub>2</sub>P/NF (b) in the non-Faradaic potential region recorded at different scan rates.

Calculation of ECSA:

ECSA =  $\frac{C_{dl}}{C_s}$ ECSA<sub>Ni<sub>2</sub>P-Fe<sub>2</sub>P/NF</sub> =  $\frac{2.33 \text{ mF cm}^{-2}}{40 \,\mu \text{ F cm}^{-2}}$  = 58.3 cm<sup>-2</sup><sub>ECSA</sub>

 $ECSA_{Ni_{2}P-Fe_{2}P-Ru_{2}P/NF} = \frac{4.45 \text{ mF cm}^{-2}}{40 \,\mu \text{ F cm}^{-2}} = 111.2 \,\text{cm}^{-2}_{ECSA}$ 



Fig. S12 OER activity of different catalysts in 1 M KOH normalized by ECSA.



Fig. S13 Durability test of  $Ni_2P$ -Fe<sub>2</sub>P-Ru<sub>2</sub>P/NF at 100 mA cm<sup>-2</sup> for OER.



Fig. S14 (a, b) SEM images of  $Ni_2P$ -Fe<sub>2</sub>P-Ru<sub>2</sub>P/NF after OER stability.



Fig. S15 PXRD patterns of  $Ni_2P$ -Fe<sub>2</sub>P-Ru<sub>2</sub>P/NF before and after stability test for the OER.



**Fig. S16** High-resolution XPS spectra of (a) Ni 2p, (b) Fe 2p, (c) Ru 3p, and P 2p of Ni<sub>2</sub>P-Fe<sub>2</sub>P-Ru<sub>2</sub>P/NF initial and after OER stability testing for the OER.



Fig. S17 CV curves of  $Ni_2P$ -Fe<sub>2</sub>P/NF (a) and  $Ni_2P$ -Fe<sub>2</sub>P-Ru<sub>2</sub>P/NF (b) in the non-Faradaic potential region recorded at different scan rates.



Fig. S18 Durability test of  $Ni_2P$ -Fe<sub>2</sub>P-Ru<sub>2</sub>P/NF at 100 mA cm<sup>-2</sup> for OER.



Fig. S19 (a, b) SEM images of  $Ni_2P$ -Fe $_2P$ -Ru $_2P/NF$  after the HER stability.



Fig. S20 PXRD patterns of  $Ni_2P$ -Fe<sub>2</sub>P-Ru<sub>2</sub>P/NF before and after stability test for the HER.

| Catalysts                                                                            | Tafel<br>slop<br>(mV dec <sup>-</sup><br><sup>1</sup> ) | η10<br>(mV) | Reference                                   |
|--------------------------------------------------------------------------------------|---------------------------------------------------------|-------------|---------------------------------------------|
| Ni <sub>2</sub> P-Fe <sub>2</sub> P-Ru <sub>2</sub> P/NF                             | 30.5                                                    | 195         | This work                                   |
| Mo-Ni <sub>3</sub> S <sub>2</sub> /Ni <sub>x</sub> P <sub>y</sub> /NF                | 60.6                                                    | /           | Adv. Energy. Mater. 2020, 10, 1903891.      |
| NiMoO <sub>x</sub> /NiMoS                                                            | 34                                                      | 186         | Nat. Commun. 2020, 11, 5462.                |
| MoS <sub>2</sub> /Co <sub>9</sub> S <sub>8</sub> /Ni <sub>3</sub> S <sub>2</sub> /Ni | 58                                                      | 166         | J. Am. Chem. Soc. 2019, 141, 10417          |
| CoMoS <sub>4</sub> /Ni <sub>3</sub> S <sub>2</sub>                                   | 63                                                      | 200         | J. Power Sources 2019, 416, 95.             |
| Porous Ni <sub>3</sub> S <sub>4</sub>                                                | 67                                                      | 257         | Adv. Funct. Mater. 2019, 29, 1900315.       |
| Co <sub>2</sub> P NCs                                                                | 60                                                      | 280         | Adv. Mater. 2018, 30, 1705796.              |
| Ni <sub>2</sub> P-CoP                                                                | 69                                                      | 320         | ACS Appl. Mater. Interfaces 2017, 9, 23222. |
| NiCoP/C                                                                              | 96                                                      | 330         | Angew. Chem. Int. Ed. 2017, 56, 3897.       |
| MAF-X27-OH                                                                           | 88                                                      | 292         | J. Am. Chem. Soc. 2016, 138, 8336           |

**Table S1.** Comparing the electrocatalytic OER performance of  $Ni_2P$ -Fe $_2P$ -Ru $_2P/NF$ with many catalysts recently reported.

| Table S2. | Comparing the    | electrocatalytic | HER perform | nance of Ni <sub>2</sub> P-I | $Fe_2P-Ru_2P/NF$ |
|-----------|------------------|------------------|-------------|------------------------------|------------------|
| with many | catalysts recent | ly reported.     |             |                              |                  |

| Catalysts                                                                            | Tafel slop<br>(mV dec <sup>-1</sup> ) | η10<br>(mV) | Reference                                     |
|--------------------------------------------------------------------------------------|---------------------------------------|-------------|-----------------------------------------------|
| Ni <sub>2</sub> P-Fe <sub>2</sub> P-Ru <sub>2</sub> P/NF                             | 85.1                                  | 78.6        | This work                                     |
| Mo-Ni <sub>3</sub> S <sub>2</sub> /Ni <sub>x</sub> P <sub>y</sub> /NF                | 68.4                                  | 109         | Adv. Energy. Mater. 2020, 10,<br>1903891.     |
| $CoMoS_4/Ni_3S_2$                                                                    | 169                                   | 158         | J. Power Sources 2019, 416, 95.               |
| Ni <sub>2</sub> P-Fe <sub>2</sub> P/NF                                               | 86                                    | 128         | Adv. Funct. Mater. 2020, 30, 2006484.         |
| NiFeP/NCH                                                                            | 125                                   | 216         | J. Am. Chem. Soc. 2019, 141, 7906.            |
| MoS <sub>2</sub> /Co <sub>9</sub> S <sub>8</sub> /Ni <sub>3</sub> S <sub>2</sub> /Ni | 85                                    | 113         | J. Am. Chem. Soc. 2019, 141, 10417            |
| $(Co_{1-x}Ni_x)(S_{1-y}Py)_2/G$                                                      | 85                                    | 117         | Adv. Energy Mater. 2018, 8, 1802319.          |
| Ni <sub>12</sub> P <sub>5</sub> /Ni <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> -HS | 93.1                                  | 114         | <i>Appl. Catal. B Environ</i> 2017, 204, 486. |

| Catalysts                                                                            | Cell voltage<br>(V) | Reference                               |
|--------------------------------------------------------------------------------------|---------------------|-----------------------------------------|
| Ni <sub>2</sub> P-Fe <sub>2</sub> P-Ru <sub>2</sub> P/NF                             | 1.49                | This work                               |
| Fe-CoP/Ni(OH) <sub>2</sub>                                                           | 1.52                | Adv. Funct. Mater. 2021, 31, 2101578.   |
| Mo-Ni <sub>3</sub> S <sub>2</sub> /NixPy/NF                                          | 1.46                | Adv. Energy. Mater. 2020, 10, 1903891.  |
| NiCoP@NiMn LDH/NF                                                                    | 1.51                | Appl. Mater. Interfaces 2020, 12, 4385. |
| Cr-doped FeNiP/NCN                                                                   | 1.5                 | Adv. Mater. 2019, 31, 1900178.          |
| NiFeP/SG                                                                             | 1.54                | Nano Energy 2019, 58, 870.              |
| NiFeP/NCH                                                                            | 1.59                | J. Am. Chem. Soc. 2019, 141, 7906.      |
| MoS <sub>2</sub> /Co <sub>9</sub> S <sub>8</sub> /Ni <sub>3</sub> S <sub>2</sub> /Ni | 1.54                | J. Am. Chem. Soc. 2019, 141, 10417      |
| Mo-doped CoP/CC                                                                      | 1.56                | Nano Energy 2018, 48, 73.               |

**Table S3.** Comparing the electrocatalytic performance of  $Ni_2P$ -Fe<sub>2</sub>P-Ru<sub>2</sub>P/NF with recently reported catalysts for overall water splitting.