Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

SUPPLEMENTARY

to

Chemical lattice strain in nonstoichiometric oxides: an overview

Dmitry S. Tsvetkov^{*1}, Vladimir V. Sereda^{1,2}, Dmitry A. Malyshkin^{1,2}, Ivan L. Ivanov^{1,2}, Andrey Yu. Zuev¹

¹Institute of Natural Sciences and Mathematics, Ural Federal University, 620002, 19 Mira St., Yekaterinburg, Russia ²Laboratory of Hydrogen Energy, Ural Federal University, 620002, 19 Mira St., Ekaterinburg, Russia *corresponding author: dmitry.tsvetkov@urfu.ru

Oxide	Temperatures, °C	$^{\delta}$ range	$\beta = \varepsilon_{chem} / \Delta \delta$	Source	
		0.02-0.20	0.092	1	
CeO _{2–δ}	900	0.02-0.10	0.101	2	
		0.12-0.18	0.073		
$Ce_{0.9}Pr_{0.1}O_{2-\delta}$	650-900	0.01-0.06	0.087	3	
	800	0.05-0.10	0.084	_ 4	
Ce _{0.8} PI _{0.2} O _{2-δ}	800	0.10-0.15	0.108		
	700-900	0.00-0.14	0.101	5	
$Ce_{0.9}Gd_{0.1}O_{2-\delta}$	700-900	0.01-0.07	0.132	6	
	800-900	0.08-0.14	0.078	6	
$Ce_{0.8}Gd_{0.2}O_{2-\delta}$	700-800	0.10-0.15	0.055	7, 8	
Ce _{0.9} Υ _{0.1} Ο _{2-δ}	700-1000	0.05-0.23	0.086	9	
$Ce_{0.8}Y_{0.2}O_{2-\delta}$	700-1000	0.10-0.25	0.075	9	
Ce _{0.8} Y _{0.2} O _{2-δ}	900	0.12-0.20	0.080	10	
Се _{0.9} Sm _{0.1} O _{2-б}	700-1000	0.05-0.18	0.088	9	
$Ce_{0.8}Sm_{0.2}O_{2-\delta}$	Ce _{0.8} Sm _{0.2} O _{2-δ} 700-1000		0.092	9	
$Ce_{0.5}Zr_{0.4}Pr_{0.1}O_{2-\delta}$	2e _{0.5} Zr _{0.4} Pr _{0.1} O _{2-δ} 700-900		0.046	5	
$Ce_{0.5}Zr_{0.5}O_{2-\delta}$	-	0.00-0.25	0.048	5	
$Ce_{0.8}Zr_{0.2}O_{2-\delta}$	700	0.06-0.15	0.055		
	800	0.05-0.15	0.044	11	
	900	0.05-0.15	0.062		

Oxide	$\Delta\delta$	$eta = arepsilon_{chem} / \Delta \delta$	Source
$La_{0.8}Sr_{0.2}CrO_{3-\delta}$	0.10	0.016	12
La _{0.76} Sr _{0.24} CrO _{3-δ}	0.12	0.020	12
$La_{0.7}Sr_{0.3}CrO_{3-\delta}$	0.15	0.023	12
$La_{0.9}Ca_{0.1}CrO_{3-\delta}$	0.09	0.021	13
La _{0.8} Ca _{0.2} CrO _{3-δ}	0.04	0.028	13
La _{0.7} Ca _{0.3} CrO _{3-δ}	0.10	0.036	12
$La_{0.8}Sr_{0.2}Cr_{0.97}V_{0.03}O_{3-\delta}$	0.07	0.027	13
$La_{0.7}Ca_{0.3}Cr_{0.9}Al_{0.1}O_{3-\delta}$	0.12	0.034	12
$La_{0.7}Ca_{0.3}Cr_{0.9}Ti_{0.1}O_{3-\delta}$	0.07	0.032	12
LaCr _{0.95} Mg _{0.05} O _{3-δ}	0.02	0.016	14
LaCr _{0.85} Mg _{0.15} O _{3-δ}	0.07	0.010	14

Oxide	Temperatures, °C $\Delta\delta$ $\beta = \varepsilon_{chem}/\Delta\delta$		Source	
	room temperature	0.22	0.012	15
	(annealed samples) 0.22 0.012		0.012	15
	400-600 0.15 0.033		0.033	16
Ba Sr Ca Ea O	700-950	0.17	0.019-0.021	17
Bd _{0.5} Sr _{0.5} CO _{0.8} Fe _{0.2} O _{3-δ}	600	0.09	0.026	18
	700	0.10	0.022	18
	800	0.11	0.019	18
	900	0.12	0.016	18
$SrCo_{0.8}Fe_{0.2}O_{3-\delta}$	700-950	0.19	0.026-0.032	17
$SrFe_{0.7}AI_{0.3}O_{3-\delta}$	750-950	0.07	0.046	19
$La_{0.8}Sr_{0.2}Fe_{0.7}Ga_{0.3}O_{3-\delta}$	900	0.04	0.039	20
SrSn _{0.65} Fe _{0.35} O _{3-δ}	700-1000	0.015	0.032-0.041	21
$SrTi_{0.65}Fe_{0.35}O_{3-\delta}$	700-1000	0.06	0.040-0.049	22
$La_{0.2}Sr_{0.8}Fe_{0.55}Ti_{0.45}O_{3-\delta}$	789-998	0.05	0.052	23
Nd _{0.7} Sr _{0.3} Fe _{0.7} Co _{0.3} O _{3-δ}	750-1000	0.05	0.046	24
$Nd_{0.6}Sr_{0.4}Fe_{0.7}Co_{0.3}O_{3-\delta}$	650-1000	0.10	0.041	24
Nd _{0.5} Sr _{0.5} Fe _{0.7} Co _{0.3} O _{3-δ}	550-1000	0.13	0.036	24
Nd _{0.3} Sr _{0.7} Fe _{0.7} Co _{0.3} O _{3-δ}	550-1000	0.17	0.040	24
$Nd_{0.4}Sr_{0.6}FeO_{3-\delta}$	650-1000	0.11	0.040	25
$Nd_{0.3}Sr_{0.7}FeO_{3-\delta}$	650-1000	0.12	0.041	25
$Nd_{0,2}Sr_{0,8}FeO_{3-\delta}$	650-1000	0.12	0.041	25
$Ba_{0.95}La_{0.05}FeO_{3-\delta}$	850-950	0.025	0.061-0.071	26
	750-900	0.2	0.0574	27
SrFeO _{3-δ}	room temperature	0.2	0.0107	27
	(annealed samples)	0.5	0.0197	
$La_{0.3}Sr_{0.7}FeO_{3-\delta}$	800	0.17	0.035	28
$La_{0.5}Sr_{0.5}FeO_{3-\delta}$	800	0.10	0.059	29
$La_{0.5}Sr_{0.5}FeO_{3-\delta}$	750-900	0.065	0.033	30
La Sr FoO	500-900	0.16	0.020	31
La _{0.6} Si _{0.4} FeO _{3-δ}	659-777	0.05	0.037	32
$La_{0.8}Sr_{0.2}FeO_{3-\delta}$	850-900	0.025	0.015	33
	600-800	0.13	0.022	34
$La_{0.6}Sr_{0.4}Fe_{0.8}Co_{0.2}O_{3-\delta}$	700-900	0.13	0.031	35
	700-890	0.15	0.032	36
$La_{0.6}Sr_{0.4}Fe_{0.6}Co_{0.4}O_{3-\delta}$	600-800	0.13	0.030	34
$La_{0.6}Sr_{0.4}Fe_{0.5}Co_{0.5}O_{3-\delta}$	500-900	0.17	0.018	37
$La_{0.6}Sr_{0.4}Fe_{0.4}Co_{0.6}O_{3-\delta}$	600-800	0.12	0.028	34
	600-800	0.14	0.024	34
$La_{0.6}Sr_{0.4}Fe_{0.2}CO_{0.8}O_{3-\delta}$	800	0.18	0.022	38
$La_{0.5}Sr_{0.5}Fe_{0.5}Co_{0.5}O_{3-\delta}$	800-1000	0.12	0.036-0.039	39
$La_{0,1}Sr_{0,9}Fe_{0,2}Co_{0,8}O_{3-\delta}$	900-1000	0.12	0.047	40
La _{0.3} Sr _{0.7} CoO _{3-δ}	901	0.13	0.035	41
$La_{0.5}Sr_{0.5}CoO_{3-\delta}$	800	0.12	0.035	39
	500-900	0.17	0.022	37
La _{0.6} Sr _{0.4} COU _{3-δ}	892	0.11	0.030	41
$La_{0.8}Sr_{0.2}CoO_{3-\delta}$	891	0.07	0.025	41
LaCoO _{3-δ}	950-1050	0.03	0.020	42
(La _{0.6} Sr _{0.4}) _{0.99} CoO _{3-δ}	900	0.05	0.027	43

Table S3. Chemical expansion coefficients for some perovskite-like complex oxides containing Fe or Co

(La _{0.3} Sr _{0.7}) _{0.99} Co _{0.9} Ni _{0.1} O _{3-δ}	900	0.04	0.033	43

Oxides					
Oxide	Temperatures, °C	δ range	$\beta_a = \varepsilon_{chem}(a)/\Delta\delta$	$\beta_c = \varepsilon_{chem}(c)/\Delta\delta$	Source
LaBaCo ₂ O _{6-δ}	717-853	0.27-0.54	0.037-0.039	0.011-0.017	44
	1000	0.76-0.84	0.026	-0.016	45, 46
PrBaCo₂O _{6−δ}	573-777	0.43-0.80	0.013	-0.005	47
	852	0.73-0.83	0.017	-0.008	
	900	0.55-0.96	0.002	-0.009	48, 49
	200-1000	0.37-0.81	0.006	-0.017	50 *
	573-777	0.49-0.86	0.010-0.011	-0.008	51
NdBaCo ₂ O _{6-δ}	852	0.71-0.90	0.008	-0.007	
2 0 0	200-1000	0.44-0.86	0.013	-7.04·10 ⁻⁵	50 **
	350	0.36-0.65	-	-0.005	52
GdBaCo ₂ O _{6–δ}	440	0.59-0.70	0.007	-0.011	53
	600-750	0.60-0.95	0.008	-0.009	54
PrBaFe ₂ O _{6-δ}		0.50-0.90	0.0094	-0.0323	55
NdBaFe ₂ O _{6-δ}		0.50-0.95	0.0088	-0.0354	56, 57
SmBaFe₂O _{6−δ}	RT	0.50-0.92	0.0080	-0.0385	57-59
EuBaFe ₂ O _{6-δ}		0.59-0.85	0.0084	-0.0381	60
GdBaFe ₂ O _{6-δ}	-	0.61-0.90	0.0078	-0.0415	61
PrBaFeMnO _{6-δ}	RT	0.00-1.00	0.022	-0.008	62
$PrBaMn_2O_{6-\delta}$	RT	0.00-1.00	0.022	2.00·10 ⁻⁴	
	711	0.83-1.00	0.011	0.016	63
Sr ₂ FeMoO _{6-δ}	RT	0.01-0.09	0.012	-0.016	64
$La_2NiO_{4+\delta}$	800	0.01-0.06	-0.028 ***	0.076 ***	65
La ₂ (Ni _{0.9} Cu _{0.1})O _{4+δ}	600-900	0.01-0.07	-0.051 ***	0.84 ***	66
La ₂ (Ni _{0.9} Co _{0.1})O _{4+δ}	600-900	0.09-0.16	-0.051 ***	0.62 ***	66
La ₂ (Ni _{0.9} Fe _{0.1})O _{4+δ}	600-900	0.10-0.16	-0.081 ***	0.70 ***	66

Table S4. Chemical expansion coefficients for some double perovskite oxides and Ruddlesden-Popper

* orthorhombic symmetry, $\beta_b = \varepsilon_c(b)/\Delta\delta = 0.006$

** orthorhombic symmetry, $\beta_b = \varepsilon_c(b)/\Delta \delta = 0.017$

*** please note that as the oxygen content for Ruddlesden-Popper phases is written as " $4+\delta$ " unlike " $x-\delta$ " for the other oxides, here negative β refers to expansion, and positive – to contraction upon reduction (oxygen loss)

Fig. S1. Chemical strain of GdBaCo₂O_{6- δ}:⁵²⁻⁵⁴ filled symbols – $\varepsilon_{chem}(a)$, empty symbols – $\varepsilon_{chem}(c)$

Fig. S2. Chemical strain of $PrBaCo_2O_{6-6}$:⁴⁷⁻⁵⁰ filled symbols – $\varepsilon_{chem}(a)$, empty symbols – $\varepsilon_{chem}(c)$, crosses – $\varepsilon_{chem}(b)$, lines are given to guide the eye only

Fig. S3. Chemical strain of NdBaCo₂O_{6- δ}:^{50, 51} filled symbols – $\varepsilon_{chem}(a)$, empty symbols – $\varepsilon_{chem}(c)$, crosses – $\varepsilon_{chem}(b)$, lines are given to guide the eye only

Fig. S4. Volumetric and average linear chemical strain of NdBaCo_2O_{6-\delta}{}^{50, \, 51, \, 67}

Fig. S5. Chemical strain of $PrBaM_2O_{6-\delta}$ (M = Fe,⁵⁵ Fe_{0.5}Cu_{0.5},^{68, 69} Fe_{0.5}Mn_{0.5},⁶² Mn⁶²): filled symbols and solid lines $-\varepsilon_{chem}(a)$,

empty symbols and dashed lines – $\varepsilon_{chem}(c)$

References

- 1. M. Mogensen, N. M. Sammes and G. A. Tompsett, *Solid State Ionics*, 2000, **129**, 63-94.
- 2. H.-W. Chiang, R. N. Blumenthal and R. A. Fournelle, *Solid State Ionics*, 1993, **66**, 85-95.
- 3. S. R. Bishop, H. L. Tuller, Y. Kuru and B. Yildiz, *Journal of the European Ceramic Society*, 2011, **31**, 2351-2356.
- 4. C. Chatzichristodoulou, P. V. Hendriksen and A. Hagen, *Journal of The Electrochemical Society*, 2010, **157**, B299.
- 5. S. R. Bishop, D. Marrocchelli, W. Fang, K. Amezawa, K. Yashiro and G. W. Watson, *Energy & Environmental Science*, 2013, **6**, 1142-1146.
- 6. S. R. Bishop, K. L. Duncan and E. D. Wachsman, *Acta Materialia*, 2009, **57**, 3596-3605.
- 7. S. Wang, H. Inaba, H. Tagawa and T. Hashimoto, *Journal of The Electrochemical Society*, 1997, **144**, 4076-4080.
- 8. V. P. Gorelov, V. B. Balakireva, I. Y. Yaroslavtsev, V. A. Kazantsev and E. G. Vaganov, *Russian Journal of Electrochemistry*, 2007, **43**, 888-893.
- 9. S. Wang, E. Oikawa and T. Hashimoto, *Journal of The Electrochemical Society*, 2004, **151**, E46.
- 10. Y. Li, E. R. Maxey, J. W. Richardson Jr, B. Ma, T. H. Lee and S.-J. Song, *Journal of the American Ceramic Society*, 2007, **90**, 1208-1214.
- 11. S. R. Bishop, T. Nakamura and K. Amezawa, *Solid State Ionics*, 2014, **261**, 1-4.
- 12. T. R. Armstrong, J. W. Stevenson, L. R. Pederson and P. E. Raney, *Journal of The Electrochemical Society*, 1996, **143**, 2919-2925.
- 13. F. Boroomand, E. Wessel, H. Bausinger and K. Hilpert, *Solid State Ionics*, 2000, **129**, 251-258.
- 14. P. H. Larsen, P. V. Hendriksen and M. Mogensen, *Journal of thermal analysis*, 1997, **49**, 1263-1275.
- 15. R. Kriegel, R. Kircheisen and J. Töpfer, *Solid State Ionics*, 2010, **181**, 64-70.
- 16. M. G. Sahini, J. R. Tolchard, K. Wiik and T. Grande, *Dalton Transactions*, 2015, 44, 10875-10881.
- 17. A. A. Yaremchenko, S. M. Mikhalev, E. S. Kravchenko and J. R. Frade, *Journal of the European Ceramic Society*, 2014, **34**, 703-715.
- 18. S. McIntosh, J. F. Vente, W. G. Haije, D. H. A. Blank and H. J. M. Bouwmeester, *Chemistry of Materials*, 2006, **18**, 2187-2193.
- 19. A. A. Yaremchenko, E. V. Tsipis, A. V. Kovalevsky, J. C. Waerenborgh and V. V. Kharton, *Solid State Ionics*, 2011, **192**, 259-268.
- 20. O. Valentin, F. Millot, É. Blond, N. Richet, A. Julian, E. Véron and S. Ory, *Solid State Ionics*, 2011, **193**, 23-31.
- 21. C. S. Kim, N. H. Perry, S. R. Bishop and H. L. Tuller, *Journal of Electroceramics*, 2018, **40**, 332-337.
- 22. N. H. Perry, J. J. Kim, S. R. Bishop and H. L. Tuller, *Journal of Materials Chemistry A*, 2015, **3**, 3602-3611.
- 23. C. Y. Park and A. J. Jacobson, *Solid State Ionics*, 2005, **176**, 2671-2676.
- 24. S. I. Elkalashy, T. V. Aksenova, A. S. Urusova and V. A. Cherepanov, *Solid State Ionics*, 2016, **295**, 96-103.
- 25. T. V. Aksenova, A. E. Vakhromeeva, S. I. Elkalashy, A. S. Urusova and V. A. Cherepanov, *Journal of Solid State Chemistry*, 2017, **251**, 70-78.
- 26. H. Bae, B. Singh, L. Mathur, J. H. Joo and S.-J. Song, *Journal of The Electrochemical Society*, 2021, **168**, 034511.
- 27. V. V. Sereda, D. S. Tsvetkov, I. L. Ivanov and A. Y. Zuev, Acta Materialia, 2019, **162**, 33-45.
- 28. V. V. Kharton, A. A. Yaremchenko, M. V. Patrakeev, E. N. Naumovich and F. M. B. Marques, *Journal of the European Ceramic Society*, 2003, **23**, 1417-1426.
- 29. A. Fossdal, M. Menon, I. Wærnhus, K. Wiik, M.-A. Einarsrud and T. Grande, *Journal of the American Ceramic Society*, 2004, **87**, 1952-1958.
- 30. H. Bae, J. Hong, B. Singh, A. K. Srivastava, J. H. Joo and S.-J. Song, *Journal of The Electrochemical Society*, 2019, **166**, F180-F189.
- 31. M. Kuhn, S. Hashimoto, K. Sato, K. Yashiro and J. Mizusaki, *Solid State Ionics*, 2011, **195**, 7-15.

- 32. C. de Leeuwe, W. Hu, D. Neagu, E. I. Papaioannou, S. Pramana, B. Ray, J. S. O. Evans and I. S. Metcalfe, *Journal of Solid State Chemistry*, 2021, **293**, 121838.
- 33. H. Bae, B. Singh, I.-H. Kim, H.-N. Im and S.-J. Song, *Journal of The Electrochemical Society*, 2018, **165**, F641-F651.
- 34. M. Kuhn, S. Hashimoto, K. Sato, K. Yashiro and J. Mizusaki, *Solid State Ionics*, 2013, **241**, 12-16.
- 35. S. R. Bishop, K. L. Duncan and E. D. Wachsman, *Journal of the American Ceramic Society*, 2010, **93**, 4115-4121.
- 36. S. B. Adler, *Journal of the American Ceramic Society*, 2001, **84**, 2117-2119.
- 37. S.-i. Hashimoto, Y. Fukuda, M. Kuhn, K. Sato, K. Yashiro and J. Mizusaki, *Solid State Ionics*, 2011, **186**, 37-43.
- 38. S. Wang, M. Katsuki, M. Dokiya and T. Hashimoto, *Solid State Ionics*, 2003, **159**, 71-78.
- 39. H. L. Lein, K. Wiik and T. Grande, *Solid State Ionics*, 2006, **177**, 1795-1798.
- 40. M.-B. Choi, S.-Y. Jeon, B. Singh, Y.-S. Yoo, J.-H. Hwang and S.-J. Song, *Acta Materialia*, 2014, **65**, 373-382.
- 41. Chen, Yu and S. B. Adler, *Chemistry of Materials*, 2005, **17**, 4537-4546.
- 42. A. Y. Zuev, A. I. Vylkov, A. N. Petrov and D. S. Tsvetkov, *Solid State Ionics*, 2008, **179**, 1876-1879.
- 43. P. Hjalmarsson, M. Søgaard and M. Mogensen, *Journal of Solid State Chemistry*, 2010, **183**, 1853-1862.
- 44. C. Bernuy-Lopez, K. Høydalsvik, M.-A. Einarsrud and T. Grande, *Materials*, 2016, **9**, 154-151–154-118.
- 45. D. A. Malyshkin, A. Y. Novikov, V. V. Sereda, I. L. Ivanov, D. S. Tsvetkov and A. Y. Zuev, *Inorganic Chemistry*, 2018, **57**, 12409-12416.
- 46. D. Malyshkin, A. Novikov, D. Tsvetkov and A. Zuev, *Materials Letters*, 2018, **229**, 324-326.
- 47. R. A. Cox-Galhotra, A. Huq, J. P. Hodges, C. Yu, X. Wang, W. Gong, A. J. Jacobson and S. McIntosh, *Solid State Ionics*, 2013, **249-250**, 34-40.
- 48. D. S. Tsvetkov, I. L. Ivanov, D. A. Malyshkin and A. Y. Zuev, *Dalton Transactions*, 2014, **43**, 11862-11866.
- 49. A. L. Sednev-Lugovets, V. V. Sereda, D. A. Malyshkin, D. S. Tsvetkov, I. L. Ivanov, A. Y. Zuev and A. Maignan, *The Journal of Chemical Thermodynamics*, 2021, **161**, 106523.
- 50. I. Szpunar, R. Strandbakke, M. H. Sørby, S. L. Wachowski, M. Balaguer, M. Tarach, J. M. Serra, A. Witkowska, E. Dzik, T. Norby, M. Gazda and A. Mielewczyk-Gryń, *Materials*, 2020, **13**, 4044.
- 51. R. A. Cox-Galhotra, A. Huq, J. P. Hodges, J.-H. Kim, C. Yu, X. Wang, A. J. Jacobson and S. McIntosh, *Journal of Materials Chemistry A*, 2013, **1**, 3091-3100.
- 52. A. Chatterjee, J. M. Caicedo, B. Ballesteros and J. Santiso, *Journal of Materials Chemistry A*, 2018, **6**, 12430-12439.
- 53. L. Mogni, F. Prado, C. Jiménez and A. Caneiro, *Solid State Ionics*, 2013, **240**, 19-28.
- 54. D. S. Tsvetkov, I. L. Ivanov, D. Malyshkin, V. V. Sereda and A. Y. Zuev, *ECS Transactions*, 2016, **72**, 21-35.
- 55. P. Karen, Journal of Solid State Chemistry, 2021, **299**, 122147.
- 56. P. Karen and P. M. Woodward, *Journal of Materials Chemistry*, 1999, **9**, 789-797.
- 57. P. Karen, P. M. Woodward, P. N. Santhosh, T. Vogt, P. W. Stephens and S. Pagola, *Journal of Solid State Chemistry*, 2002, **167**, 480-493.
- 58. J. Lindén, P. Karen, A. Kjekshus, J. Miettinen, T. Pietari and M. Karppinen, *Physical Review B*, 1999, **60**, 15251-15260.
- 59. J. Nakamura, J. Lindén, H. Yamauchi and M. Karppinen, *Solid State Communications*, 2002, **121**, 269-274.
- 60. P. Karen, K. Gustafsson and J. Lindén, *Journal of Solid State Chemistry*, 2007, **180**, 148-157.
- 61. P. Karen, *Journal of Solid State Chemistry*, 2003, **170**, 9-23.
- 62. V. S. Kudyakova, A. M. Shalamova, B. V. Politov and A. Y. Suntsov, *Journal of Alloys and Compounds*, 2021, **886**, 161133.
- 63. A. C. Tomkiewicz, M. A. Tamimi, A. Huq and S. McIntosh, *Journal of Power Sources*, 2016, **330**, 240-245.
- 64. R. Kircheisen and J. Töpfer, *Journal of Solid State Chemistry*, 2012, **185**, 76-81.

- 65. S. R. Bishop, D. Marrocchelli, C. Chatzichristodoulou, N. H. Perry, M. B. Mogensen, H. L. Tuller and E. D. Wachsman, *Annual Review of Materials Research*, 2014, **44**, 205-239.
- 66. T. Nakamura, Y. Ling and K. Amezawa, *Journal of Materials Chemistry A*, 2015, **3**, 10471-10479.
- 67. V. A. Cherepanov, T. V. Aksenova, L. Y. Gavrilova and K. N. Mikhaleva, *Solid State Ionics*, 2011, **188**, 53-57.
- 68. J. Lindén, M. Kochi, K. Lehmus, T. Pietari, M. Karppinen and H. Yamauchi, *Journal of Solid State Chemistry*, 2002, **166**, 118-127.
- 69. A. I. Klyndyuk, *Physics of the Solid State*, 2008, **50**, 609.