Electronic Supporting Information

Accelerated Li-Ion Transport through Zwitterion-Anchored Separator for High Performance Li-S Batteries

Jun Hyuk Lee,^{a,†} Jeong Seok Yeon,^{a,†} Jihoon Kim,^b Jeong Hee Park,^a Seong Soo Yoo,^a Sunghwan Hong,^c Minjun Kim,^c Moon Jeong Park,^{b,*} Ho Seok Park,^{a,*} Pil J. Yoo^{a,c,*}

^a School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea

^b Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea

^c SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea

[†] These authors contributed equally to this work.

* Corresponding author: moonpark@postech.ac.kr, phs0727@skku.edu, pjyoo@skku.edu.

Fig. S1 (a) Cross-sectional FE-SEM image of SB@PDA-PE separator, (b) Result of SEM-EDS mapping of elemental C, O, N, S and (c) EDS spectrum of the cross-sectional image.

Fig. S2 Tilted observation of SB@PDA-PE using a focused ion beam combined with SEM (FIB-SEM).

SB@PDA-PE.

Fig. S4 FTIR spectra of PE, PDA-PE and SB@PDA-PE.

PDA-coating and SB-zwitterion-anchoring processes were additionally investigated by Fourier-transform infrared (FTIR) spectroscopy. The spectrum of the PDA-PE shows a broad peak at ~3250 cm⁻¹ assigned to O-H and N-H stretching vibrations, while the absorption peaks at 1595 and 1515 cm⁻¹ correspond to N–H bending motions associated with the amine groups and C=C stretching vibrations of aromatic rings, respectively. Other peaks in the 1250–1450 cm⁻¹ range are attributable to phenolic O-H deformations coupled/decoupled with C=C ring stretching and phenolic C=O stretching.¹ As such, these observed peaks provide evidence that the separator surface is fully PDA coated. In contrast, while the spectrum of SB@PDA-PE shows absorption peaks that correspond to PDA, the N-H stretching and bending peaks assigned to the amine groups grafted to the zwitterionic monomer are slightly shifted to higher wavenumbers. In particular, the characteristic peaks at 1036 and 1167 cm⁻¹ that correspond to O-S=O stretching motions are observed due to the presence of the sulfonate group. The peak located at 963 cm⁻¹ is consistent with the C-N⁺ moiety in the quaternary ammonium group, while a strong C=O peak is observed at 1719 cm⁻¹ for SB@PDA-PE. As a result, the FTIR spectra support that zwitterionic SB monomers had been successfully anchored onto the aminefunctional groups of the surface-coated PDA layer.

Fig. S5 Ion conductivity and Gurley number data according to PDA coating time.

Fig. S6 SEM images of precipitated Li₂S on the carbon cloth (CC) using (a) PE, (b) PDA-PE, and (c) SB@PDA-PE separator.

Fig. S7 Galvanostatic charge/discharge (GCD profiles of Li-S cell with (a) PE and (b) PDA-PE at various C-rates.

Fig. S8 CV curves of Li-S cell with (a) PE and (b) PDA-PE obtained in the range of 0.1-0.4 mV s⁻¹

Fig. S9 Anodic and cathodic peak current versus the square root of scan rate plots of (a) PE, (b) PDA-PE and (c) SB@PDA-PE separator

Fig. S10 Digital photograph image of Li-S pouch cell with the SB@PDA-PE separator (sulfur loading mass of 4.0 mg cm⁻²)

		Initial	Capacity		
Coating Materials	Sulfur loading (mg cm ⁻²)	capacity	decay	E/S ratio	Ref.
		(mAh g ⁻¹)	(%)	(µL mg ⁻¹)	
		(C-rate)	(cycles)		
Polydopamine- Zwitterionic sulfobetaine	2.0	1365.9	0.19	10	THIS WORK
		(0.2 C)	(150)		
		812.6	0.034		
		(3 C)	(1200)		
	4.0	1252.7	0.25		
		(0.2 C)	(100)		
Polydopamine	1.5 - 1.8	1271		-	52
		(0.2 C)	-		52
UiO-66- S/Nafion	1.7	1127.4	0.11	< 10	S3
		(0.1 C)	(200)		
UiO-66-SO ₃ Li	2.0	1020	0.056	40	S4
		(0.5 C)	(500)		
Porous	~ 2.0	070	0.11		S5
sulfonated		(0.5 C)	C) (200)	-	
carbon (PSC)		(0.5 C)			
Polystyrene	1.3	1278	0.05	5 0) 20	
sulfonacte@H		(0.5 C)	(500)		S6
KUST-1		(0.5 C)	(300)		
Sulfonated	3.0	1262	0.25	7	S7
acetylene black		(0.1 C)	(100)		
Sulfonate-					
ended	0.53	781	0.08	_	58
perfluoroalkyl	0.55	(1 C)	(500)		50
group					
Perfluorinated	1.75	1352 (0.2)	0.31 (100)	50	S9
sulfonic acid					
ionomers					
Polypropylene	2.0±0.5	1120 (0.05)	0.39 (40)	30	S10
grafted with					
styrenesulfonat					
e					

Table S1 Comparison of the electrochemical performances of different materials modified

 separators for Li-S batteries.

Supporting References

- [S1] V. K. Thakur, M.-F. Lin, E. J. Tan, P. S. Lee, J. Mater. Chem., 2012, 22, 5951.
- [S2] G. C. Li, H. K. Jing, Z. Su, C. Lai, L. Chen, C. C. Yuan, H. H. Li, L. Liu, J. Mater. Chem. A, 2015, 3, 11014-11020.
- [S3] S. H. Kim, J. S. Yeon, R. Kim, K. M. Choi, H. S. Park, J. Mater. Chem. A, 2018, 6, 24971-24978.
- [S4] Z. Wang, W. Huang, J. Hua, Y. Wang, H. Yi, W. Zhao, Q. Zhao, H. Jia, B. Fei, F. Pan, Small Methods, 2020, 4, 2000082.
- [S5] P. J. Kim, H. D. Fontecha, K. Kim, V. G. Pol, ACS Appl. Mater. Interfaces, 2018, 10, 14827-14834.
- [S6] Y. Guo, M. Sun, H. Liang, W. Ying, X. Zeng, Y. Ying, S. Zhou, C. Liang, Z. Lin, X. Peng, ACS Appl. Mater. Interfaces, 2018, 10, 30451-30459.
- [S7] F. Zeng, Z. Jin, K. Yuan, S. Liu, X. Cheng, A. Wang, W. Wang, Y.-S. Yang, J. Mater. Chem. A, 2016, 4, 12319-12327.
- [S8] J.-Q. Huang, Q. Zhang, H.-J. Peng, X.-Y. Liu, W.-Z. Qian, F. Wei, *Energy Environ. Sci.*, 2014, 7, 347-353.
- [S9] J. Jiao, H. Li, W. Lin, R. Wang, Z. Meng, W. Guo, S. Zhao, J. Li, H. Tang, J. Solid State Electrochem., 2020, 24, 771-779.
- [S10] J. M. Conder, A. F. Cuenca, E. M. Gubler, L. Gubler, P. Novák, S. Trabesinger, ACS Appl. Mater. Interfaces, 2016, 8, 18822-18831.