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Figure S1. Creation of a divacancy in 5- and 6-membered ring graphene flakes (top and bottom 
respectively). The two carbon atoms annotated with a dashed circle are removed to create a 
vacancy (left). The four nearest carbon atoms to this region are replaced by dopant atoms 
(middle). Finally, the Fe atom is embedded in the middle of the divacancy to complete the SAC 
model (right).  
 

Table S1. Total energies (in Ha) for LS and IS N-doped 5- and 6-membered ring SACs and 
intermediates.  

system spin state resting state 
energy (Ha) 

oxo energy 
(Ha) 

hydroxyl 
energy (Ha) 

methanol 
energy (Ha) 

5-membered Fe-N-C 
LS -1874.8439 -1949.9342 -1950.6178 -1990.4720 
IS -1874.9148 -1949.9961 -1950.6391 -1990.5272 

6-membered Fe-N-C 
LS -1721.9736 -1797.0657    -1797.7547 -1837.6396 
IS -1722.0352 -1797.1170 -1797.7630 -1837.5627 

 
 
Table S2. Spin splitting energy (in kcal/mol) for LS and IS N-doped 5- and 6-membered ring 
SACs.  

system 
DEI-L spin splitting energy (kcal/mol) 

resting 
state oxo hydroxyl methanol 

5-membered Fe-N-C -44.49 -38.87 -13.35 -34.68 
6-membered Fe-N-C -38.63 -32.19 -5.21 -38.63 
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Table S3. Reaction energetics (in kcal/mol) for LS and IS N-doped 5- and 6-membered ring 
SACs.  

system spin state ΔE(oxo) 
(kcal/mol) 

ΔE(HAT) 
(kcal/mol) 

ΔE(rebound) 
(kcal/mol) 

ΔE(release) 
(kcal/mol) 

5-membered Fe-N-C LS -12.69 -3.42 -39.76 19.02 
IS -7.07 22.09 -61.09 9.21 

6-membered Fe-N-C LS -13.83 -6.79 -59.05 42.81 
IS -7.30 20.17 -72.82 23.17 

 

Table S4. Spin states and charges for 5- and 6-membered ring SAC models, 14-membered 
macrocyclic Fe complexes, and transition-metal complexes with different coordinating atoms (N, 
O, P and S). For all SAC models, the spin states of other catalytic intermediates are also 
indicated. Systems that were not explicitly studied in this work are indicated with “--”. In all 
instances, we treat iron as Fe(II) and add it with a net charge of +2. 

system resting state 
spin state 

metal oxo 
spin state 

metal hydroxyl 
spin state 

metal methanol 
spin state 

system 
charge 

5-membered ring SAC 
Fe-N-C singlet singlet doublet singlet -2 
Fe-O-C singlet singlet doublet singlet +2 
Fe-P-C singlet singlet doublet singlet -2 
Fe-S-C singlet singlet doublet singlet +2 

6-membered ring SAC 
Fe-N-C singlet singlet doublet singlet +2 
Fe-O-C singlet singlet doublet singlet +2 
Fe-P-C singlet singlet doublet singlet +2 
Fe-S-C singlet singlet doublet singlet +2 

14-membered macrocycle 
Fe-N-C singlet -- -- -- +2 
Fe-O-C singlet -- -- -- +2 
Fe-P-C singlet -- -- -- +2 
Fe-S-C singlet -- -- -- +2 

TMC 
Fe(pyridine)6 singlet -- -- -- +2 

Fe(4H-pyran)6 singlet -- -- -- +2 
Fe(phosphinine)6 singlet -- -- -- +2 
Fe(4H-thiopyran)6 singlet -- -- -- +2 

Fe(pyrrole)6 singlet -- -- -- -4 
Fe(furan)6 singlet -- -- -- +2 

Fe(phospholide)6 singlet -- -- -- -4 
Fe(thiophene)6 singlet -- -- -- +2 
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Figure S2. Atomic structures of increasingly large SACs with different coordinating atoms 
shown in green (X = N, O, P or S).  The representative structures are shown in ball-and-stick 
representation colored as follows: Fe in brown, C in gray, and H in white. 
 

 
Figure S3. Normalized flake distortion of increasingly large P- and S-coordinating SACs with 
full geometry optimization. Distortion is quantified by measuring the distance of the center of 
mass from the initial planar SAC geometry after dividing the size of corresponding flake. Here, 
the number of C atoms refers to all atoms in the flake prior to insertion of the vacancy and 
placement of the dopants and iron.  
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Table S5. Out-of-plane distortion of increasingly large SACs with P- and S-coordinating atoms 
for full geometry optimization as quantified by distance of the center of mass from the initial 
planar SAC geometry. All distances are in units of Å. 

system out-of-plane distortion out-of-plane distortion 
X=P X=S 

C36X4H16Fe  1.52 1.14 
C74X4H22Fe 2.07 1.77 
C124X4H28Fe 2.39 2.13 
C186X4H34Fe 2.67 2.33 
C260X4H40Fe 2.84 2.55 
C346X4H46Fe 2.96 2.64 

 

 
Figure S4. Local root-mean-square deviation (RMSD) of the metal and four coordinating atoms 
of increasingly large P- and S-coordinating SACs as quantified by the difference between the 
initial planar and the fully optimized distorted structures. Here, the number of C atoms refers to 
all atoms in the flake prior to insertion of the vacancy and placement of the dopants and iron. 
 
Table S6. Average metal–ligand bond lengths of increasingly large SACs with different 
coordinating atoms (N, O, P and S). All distances are in units of Å. 

system bond length bond length bond length bond length 
X=N X=O X=P X=S 

C36X4H16Fe  1.92 1.90 2.15 2.21 
C74X4H22Fe 1.90 1.90 2.07 2.10 
C124X4H28Fe 1.91 1.89 2.07 2.11 
C186X4H34Fe 1.91 1.90 2.07 2.09 
C260X4H40Fe 1.88 1.89 2.06 2.10 
C346X4H46Fe 1.87         1.90 2.06 2.09 
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 Figure S5. The metal dihedral angle, θ, is the dihedral angle between the Fe metal and the plane 
formed by any 3 of the 4 coordinating atoms. This angle is shown schematically in the P-
coordinated 5-membered ring SAC. A negative value for this angle indicates that metal lies 
below the coordinating atom plane.  
 
Table S7. Average metal–ligand bond lengths (BLs, in Å) of 5- and 6-membered SAC models, 
14-membered macrocyclic complexes, and mononuclear transition-metal complex analogues 
with and without constraints out of the plane (i.e., the z-axis, for the 5-membered and 6-
memebered SAC only). Results are shown for cases where all coordinating atoms are one of four 
elements (N, O, P and S). Systems that were not constrained and have no result are indicated as 
“--”. 

system full geometry optimization 
average M-L BL (Å) 

constrained z-axis 
average M-L BL (Å) 

5-membered ring SAC 
Fe-N-C 1.97 1.97 
Fe-O-C 1.99 1.99 
Fe-P-C 2.19 1.95 
Fe-S-C 2.15 1.97 

6-membered ring SAC 
Fe-N-C 1.92 1.92 
Fe-O-C 1.89 1.89 
Fe-P-C 2.15 2.01 
Fe-S-C 2.21 1.94 

14-membered macrocycle 
Fe-N-C 1.84 -- 
Fe-O-C 1.87 -- 
Fe-P-C 2.09 -- 
Fe-S-C 2.13 -- 

octahedral transition metal complex 
Fe(pyridine)6 2.11 -- 

Fe(4H-pyran)6 2.17 -- 
Fe(phosphinine)6 2.25 -- 
Fe(4H-thiopyran)6 2.38 -- 

Fe(pyrrole)6 2.11 -- 
Fe(furan)6 2.03 -- 

Fe(phospholide)6 2.33 -- 
Fe(thiophene)6 2.38 -- 

 

θ

θ= 19.3 degree θ= -3.3 degreeθ= 3.9 degree θ= -11.1 degree
P-coordinated SAC

6-membered ring5-membered ring

P-coordinated SACS-coordinated SAC S-coordinated SAC
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Figure S6. The metal dihedral angle, θ (labeled on the N-coordinating 5-membered ring oxo 
intermediate structure), is the dihedral angle between the Fe metal and the plane formed by 3 
coordinating atoms. We annotate this angle for each intermediate (resting state, oxo, hydroxyl, 
methanol) in the radical rebound mechanism for conversion of methane to methanol. 
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Table S8. The average dopant–dopant distance (in Å) for 5- and 6-membered SAC models with 
different coordinating atoms (N, O, P and S).  

system dopant-dopant 
distance (Å) 

5-membered ring SAC 
Fe-N-C 2.80 
Fe-O-C 2.80 
Fe-P-C 3.10 
Fe-S-C 3.11 

6-membered ring SAC 
Fe-N-C 2.63 
Fe-O-C 2.78 
Fe-P-C 2.95 
Fe-S-C 3.13 

 
Table S9. Covalent radii of X bonds (in Å). The low-spin (LS) Fe covalent radius is estimated to 
be 1.42 Å1. 

X X radius (Å) 
N 0.71 
O 0.66 
P 1.07 
S 1.05 
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Table S10. Relative metal−ligand bond length, drel(Fe−X), of 5- and 6-membered ring SAC 
models, 14-membered macrocyclic Fe complexes and mononuclear transition-metal complex 
analogues with different coordinating atoms (N, O, P and S). All relative bond lengths are 
unitless because they are the ratios of the bond length to the sum of the covalent radii of the 
substituent atoms.  

system drel(Fe−X) 
5-membered ring SAC 
Fe-N-C 0.93 
Fe-O-C 0.95 
Fe-P-C 0.88 
Fe-S-C 0.87 
6-membered ring SAC 
Fe-N-C 0.90 
Fe-O-C 0.91 
Fe-P-C 0.87 
Fe-S-C 0.89 

14-membered macrocycle 
Fe-N-C 0.86 
Fe-O-C 0.90 
Fe-P-C 0.84 
Fe-S-C 0.86 

octahedral transition metal complex 
Fe(pyridine)6 0.99 

Fe(4H-pyran)6 1.04 
Fe(phosphinine)6 0.90 
Fe(4H-thiopyran)6 0.96 

Fe(pyrrole)6 0.99 
Fe(furan)6 0.97 

Fe(phospholide)6 0.94 
Fe(thiophene)6 0.96 
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Table S11. Complexation energies (in eV) of 5- and 6-membered ring SAC models and 14-
membered macrocyclic Fe complexes with different coordinating atoms (N, O, P and S) and 
constraint conditions.  

system full geometry optimization 
complexation energy (eV) 

constrained z-axis 
complexation energy (eV) 

difference between full 
and constrained (eV) 

5-membered ring SAC 
Fe-N-C -38.08 -38.09 0.01 
Fe-O-C -31.18 -31.18 0.00 
Fe-P-C -33.54 -32.17 -1.37 
Fe-S-C -32.63 -32.03 -0.60 

6-membered ring SAC 
Fe-N-C -37.37 -37.58 0.20 
Fe-O-C -28.60 -28.75 0.14 
Fe-P-C -33.64 -32.10 -1.54 
Fe-S-C -31.39 -29.84 -1.55 

14-membered macrocycle 
Fe-N-C -38.24 -- -- 
Fe-O-C -28.10 -- -- 
Fe-P-C -33.39 -- -- 
Fe-S-C -29.14 -- -- 

 

Table S12. Comparison of Mulliken spin density on the metal for each intermediate. 

system 
resting state 

Mulliken 
spin density  

metal oxo 
Mulliken 

spin density 

metal hydroxyl 
Mulliken spin 

density 

metal methanol 
Mulliken spin 

density 
5-membered ring SAC 

Fe-N-C 0.00 0.00 0.989 0.00 
Fe-O-C 0.00 0.00 0.814 0.00 
Fe-P-C 0.00 0.00 0.975 0.00 
Fe-S-C 0.00 0.00 0.893 0.00 

6-membered ring SAC 
Fe-N-C 0.00 0.00 0.952 0.00 
Fe-O-C 0.00 0.00 1.034 0.00 
Fe-P-C 0.00 0.00 0.955 0.00 
Fe-S-C 0.00 0.00 0.986 0.00 

 
Table S13. The natural charges and Fe 3d orbital populations for 5- and 6-membered SACs with 
different coordinating atoms (N, O, P and S).  

system natural charge NBO 3d orbital population 
5-membered ring SACs 

Fe-N-C 0.87457 6.74 
Fe-O-C 0.98444 6.64 
Fe-P-C 0.35333 7.26 
Fe-S-C 0.59156 7.07 

6-membered ring SACs 
Fe-N-C 1.03059 6.71 
Fe-O-C 0.56377 7.05 
Fe-P-C 0.36083 7.24 
Fe-S-C 0.58992 7.07 
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Table S14. The flake oxidation energy (in eV) (i.e., the energy for oxo formation) for 5- and 6-
membered flakes with different coordinating atoms (N, O, P and S) and no metal present. The 
favorable oxo formation on the P-containing flake is due to formation of a µ-oxo that cannot 
form when a metal is present. All other oxidation energies are less favorable than the equivalent 
metal-oxo formation. 

system flake oxidation 
energy (eV) 

5-membered ring flakes 
N-C -0.40 
O-C 2.95 
P-C -2.61 
S-C -0.23 
6-membered ring flakes 
N-C 0.52 
O-C 2.50 
P-C -5.77 
S-C -0.62 

 

 
Figure S7. ΔE(oxo) vs ΔE(HAT) (top) and ΔE(oxo) vs ΔE(release) (bottom) reaction energies 
(in kcal/mol) of representative TMCs from prior work2 computed with B3LYP/LACVP* 
compared to SAC reaction energies computed with  ωPBEh/LACVP*, as reported in the main 
text, (circles) and B3LYP/LACVP* single-point energies (triangles) on the SAC models. For a 
subset of O-, P- and S-doped SACs in this work, the B3LYP single-point energy calculations did 
not converge. The TMCs from prior work are the full LS Fe(II) subset from the square pyramidal 
constrained (SQ) set of Ref. 2. The TMC KDEs are colored in gray and shown as contour lines 
with decreasing saturation in 7 evenly spaced levels. Although a different functional is 
employed, the energy range sampled on SACs is comparable with changing functional. 
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Figure S8. Parity plot of SAC reaction energies (ΔE(oxo), ΔE(HAT) and ΔE(release) between 
the ωPBEh and B3LYP functionals with the LACVP* basis set in kcal/mol. The 
B3LYP/LACVP* energies are evaluated as single-point energies on the ωPBEh structures.  
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Figure S9.  ΔE(oxo) vs ΔE(HAT) (top) and ΔE(oxo) vs ΔE(release) (bottom) reaction energies 
(in kcal/mol) of representative transition-metal complexes (TMCs) from prior work2 compared to  
5- (pentagon symbols) and 6-membered (hexagon symbols) ring SAC systems. Both TMCs and 
SACs are colored by the metal-coordinating atoms in the ligands, as indicated in inset legend. 
The TMCs are from the all LS Fe(II) in the square pyramidal constrained (SQ) set in Ref. 2. For 
the complexes containing multiple coordinating atom elements, the symbol is colored by the 
heavier coordinating atom. The SACs are further distinguished by full geometry optimization 
(opaque) and constrained z-axis optimization (translucent). 
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Figure S10.  ΔE(oxo) vs ΔE(HAT) (top) and ΔE(oxo) vs ΔE(release) (bottom) reaction energies 
(in kcal/mol) of 80 homoleptic LS Fe(II) molecular complexes from the SQ data set in Ref.2 
relative to 5- (pentagon) and 6-membered (hexagon) ring SAC systems. Both TMCs and SACs 
are colored by metal-coordinating atoms as indicated in inset legend. The TMCs are from the all 
LS Fe(II) in the square pyramidal constrained (SQ) set in Ref. 2. Representative structures of a 
O-doped 6-membered ring graphene flake SAC with bond length of 1.9 Å and Fe(II)(OH2)4-oxo 
with an out-of-plane distortion angle of 10° and bond length of 2.2 Å are shown in inset. The 
SACs are further distinguished by full geometry optimization (opaque) and constrained z-axis 
optimization (translucent). 
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Figure S11.  ΔE(oxo) vs ΔE(HAT) (top) and ΔE(oxo) vs ΔE(release) (bottom) reaction energies 
(in kcal/mol) of representative TMCs from prior work2 compared to  5- (pentagon symbols) and 
6-membered (hexagon symbols) ring SAC systems. The SACs are colored by the metal-
coordinating atoms in the ligands, as indicated in inset legend. The TMCs are from the all LS 
Fe(II) in the tetragonal equilibrium (TE) set in Ref. 2. The TMCs KDEs are colored in gray and 
shown as contour lines with decreasing saturation in 7 evenly spaced levels. The SACs are 
distinguished by full geometry optimization (opaque) and constrained z-axis optimization 
(translucent). 
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Figure S12.  ΔE(oxo) vs ΔE(HAT) (top) and ΔE(oxo) vs ΔE(release) (bottom) reaction energies 
(in kcal/mol) for representative TMCs from prior work2. The TMCs are from the all LS Fe(II) in 
the tetragonal equilibrium (TE) and square pyramidal (SQ) set in Ref. 2. The TE and SQ TMC 
KDEs are colored in red and blue, respectively, and shown as contour lines with decreasing 
saturation in 7 evenly spaced levels.  
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Figure S13.  ΔE(oxo) vs ΔE(HAT) (top) and ΔE(oxo) vs ΔE(release) (bottom) reaction energies 
(in kcal/mol) of representative TMCs from prior work2. The TMCs are from the all LS Fe(II) in 
the tetragonal equilibrium (TE) and square pyramidal (SQ) set in Ref. 2. The TE and SQ TMC 
scatters are colored in red and blue, respectively. To show structure in the data, the y-axis scale 
has been slightly truncated in a manner that excludes four points from LS Fe(II) complexes in the 
TE set (in red) with very high release values. 
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Figure S14. The metal dihedral angle, θ (labeled on the the N-coordinating SAC oxo 
intermediate structure), is the dihedral angle between the Fe metal and the plane formed by 3 
coordinating atoms. We report this angle for each intermediate (resting state, oxo, hydroxo, 
methanol) in the radical rebound mechanism for methane-to-methanol conversion. 
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Figure S15. The last cycle of Nudged Elastic Band (NEB) in TeraChem (ωPBEh/LACVP*) for 
oxo formation putative transition states on N-doped 5- and 6-membered ring SACs (top and 
bottom respectively).  
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Figure S16. The bond length scan between O and H during hydrogen atom transfer (HAT) on N-
doped 5- and 6-membered ring SACs (left and right respectively). 
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