Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Modeling the Roles of Rigidity and Dopants in Single-Atom Methane-to-Methanol Catalysts

Haojun Jia^{1,2}, Aditya Nandy^{1,2}, Mingjie Liu¹, and Heather J. Kulik^{1,*}

¹Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA

02139

²Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139

Contents

Figure S1 SAC model construction	Page S2
Table S1 Total energies for LS and IS SACs and intermediates	Page S2
Table S2 Spin splitting energies for LS and IS SACs	Page S2
Table S3 Reaction energies for LS and IS SACs	Page S3
Table S4 Spin states and charges of all compounds in this work	Page S3
Figure S2 Structures of increasingly large SAC models	Page S4
Figure S3 Center of mass differences between initial and final SACs by dopant and size	Page S4
Table S5 Center of mass differences between initial and final SACs by dopant and size	Page S5
Figure S4 Metal-local RMSD measured by metal and four metal-coordinating atoms	Page S5
Table S6 Metal-ligand bond lengths of SACs by dopant and size	Page S5
Figure S5 Distortion in P- and S-coordinating SACs	Page S6
Table S7 Metal-ligand bond lengths of SACs, macrocycles, and TMCs	Page S6
Figure S6 Catalytic intermediates of N- and O-coordinating SACs	Page S7
Table S8 Primary coordination sphere dopant-dopant distances of SACs	Page S8
Table S9 Covalent radii of Fe-X bonds used for relative bond lengths	Page S8
Table S10 Relative metal-ligand bond lengths of all compounds	Page S9
Table S11 Complexation energies of SACs with and without constraints	Page S10
Table S12 Mulliken spin density on intermediates in representative SACs	Page S10
Table S13 NBO analysis of resting state catalyst SAC metal center charges	Page S10
Table S14 Oxo formation energetics on non-metal sites of SACs	Page S11
Figure S7 Scatter plot of ωPBEh and B3LYP calculations on SACs	Page S11
Figure S8 Parity plot of ωPBEh and B3LYP calculations on SACs by reaction energy	Page S12
Figure S9 Scatter plot of SQ complexes with multiple ligand types	Page S13
Figure S10 Scatter plot of SQ complexes with a single ligand type	Page S14
Figure S11 KDE plot of reaction energetics on TE complexes compared to SACs	Page S15
Figure S12 KDE plot of reaction energetics on SQ and TE complexes	Page S16
Figure S13 Scatter plot of reaction energetics on TE complexes	Page S17
Figure S14 Catalytic intermediates of N- and P-coordinating macrocycles	Page S18
Figure S15 The last cycle of NEB for the oxo formation transition state	Page S19
Figure S16 The bond length scan between O and H for the HAT transition state	Page S20
References	Page S20

Figure S1. Creation of a divacancy in 5- and 6-membered ring graphene flakes (top and bottom respectively). The two carbon atoms annotated with a dashed circle are removed to create a vacancy (left). The four nearest carbon atoms to this region are replaced by dopant atoms (middle). Finally, the Fe atom is embedded in the middle of the divacancy to complete the SAC model (right).

Table S1. Total energies (in Ha) for LS and IS N-doped 5- and 6-membered ring SACs and intermediates.

system	spin state	resting state energy (Ha)	oxo energy (Ha)	hydroxyl energy (Ha)	methanol energy (Ha)
5 mombored Eq.N.C	LS	-1874.8439	-1949.9342	-1950.6178	-1990.4720
5-membered Fe-N-C	IS	-1874.9148	-1949.9961	-1950.6391	-1990.5272
6 mombored Eq.N.C	LS	-1721.9736	-1797.0657	-1797.7547	-1837.6396
o-membered re-N-C	IS	-1722.0352	-1797.1170	-1797.7630	-1837.5627

Table S2. Spin splitting energy (in kcal/mol) for LS and IS N-doped 5- and 6-membered ring SACs.

	ΔE_{I-L} spin splitting energy (kcal/mol)			
system	resting state	охо	hydroxyl	methanol
5-membered Fe-N-C	-44.49	-38.87	-13.35	-34.68
6-membered Fe-N-C	-38.63	-32.19	-5.21	-38.63

system	spin state	ΔE(oxo) (kcal/mol)	ΔE(HAT) (kcal/mol)	ΔE(rebound) (kcal/mol)	∆E(release) (kcal/mol)
E momborod Eo N C	LS	-12.69	-3.42	-39.76	19.02
5-membered Fe-N-C	IS	-7.07	22.09	-61.09	9.21
6 mombored Fe N C	LS	-13.83	-6.79	-59.05	42.81
o-membered Fe-IN-C	IS	-7.30	20.17	-72.82	23.17

Table S3. Reaction energetics (in kcal/mol) for LS and IS N-doped 5- and 6-membered ring SACs.

Table S4. Spin states and charges for 5- and 6-membered ring SAC models, 14-membered macrocyclic Fe complexes, and transition-metal complexes with different coordinating atoms (N, O, P and S). For all SAC models, the spin states of other catalytic intermediates are also indicated. Systems that were not explicitly studied in this work are indicated with "--". In all instances, we treat iron as Fe(II) and add it with a net charge of +2.

ovetern	resting state	metal oxo	metal hydroxyl	metal methanol	system
system	spin state	spin state	spin state	spin state	charge
		5-membere	d ring SAC		
Fe-N-C	singlet	singlet	doublet	singlet	-2
Fe-O-C	singlet	singlet	doublet	singlet	+2
Fe-P-C	singlet	singlet	doublet	singlet	-2
Fe-S-C	singlet	singlet	doublet	singlet	+2
		6-membere	d ring SAC		
Fe-N-C	singlet	singlet	doublet	singlet	+2
Fe-O-C	singlet	singlet	doublet	singlet	+2
Fe-P-C	singlet	singlet	doublet	singlet	+2
Fe-S-C	singlet	singlet	doublet	singlet	+2
	1-	4-membered	l macrocycle		
Fe-N-C	singlet				+2
Fe-O-C	singlet				+2
Fe-P-C	singlet				+2
Fe-S-C	singlet				+2
		ТМ	IC		
Fe(pyridine) ₆	singlet				+2
Fe(4H-pyran) ₆	singlet				+2
Fe(phosphinine) ₆	singlet				+2
Fe(4H-thiopyran) ₆	singlet				+2
Fe(pyrrole) ₆	singlet				-4
Fe(furan) ₆	singlet				+2
Fe(phospholide)6	singlet				-4
Fe(thiophene) ₆	singlet				+2

Figure S2. Atomic structures of increasingly large SACs with different coordinating atoms shown in green (X = N, O, P or S). The representative structures are shown in ball-and-stick representation colored as follows: Fe in brown, C in gray, and H in white.

Figure S3. Normalized flake distortion of increasingly large P- and S-coordinating SACs with full geometry optimization. Distortion is quantified by measuring the distance of the center of mass from the initial planar SAC geometry after dividing the size of corresponding flake. Here, the number of C atoms refers to all atoms in the flake prior to insertion of the vacancy and placement of the dopants and iron.

	planar SAC geometry. An distances are in units of A.				
system	out-of-plane distortion	out-of-plane distortion			
	X=P	X=S			
	C ₃₆ X ₄ H ₁₆ Fe	1.52	1.14		
	C ₇₄ X ₄ H ₂₂ Fe	2.07	1.77		
	C ₁₂₄ X ₄ H ₂₈ Fe	2.39	2.13		
	C ₁₈₆ X ₄ H ₃₄ Fe	2.67	2.33		
	C ₂₆₀ X ₄ H ₄₀ Fe	2.84	2.55		
	C ₃₄₆ X ₄ H ₄₆ Fe	2.96	2.64		

Table S5. Out-of-plane distortion of increasingly large SACs with P- and S-coordinating atoms for full geometry optimization as quantified by distance of the center of mass from the initial planar SAC geometry. All distances are in units of Å.

Figure S4. Local root-mean-square deviation (RMSD) of the metal and four coordinating atoms of increasingly large P- and S-coordinating SACs as quantified by the difference between the initial planar and the fully optimized distorted structures. Here, the number of C atoms refers to all atoms in the flake prior to insertion of the vacancy and placement of the dopants and iron.

coordinating atoms (1, 0, 1 and 5). The distances are in antis of T.				
ovetom	bond length	bond length	bond length	bond length
system	X=N	X=O	X=P	X=S
C ₃₆ X ₄ H ₁₆ Fe	1.92	1.90	2.15	2.21
C ₇₄ X ₄ H ₂₂ Fe	1.90	1.90	2.07	2.10
C ₁₂₄ X ₄ H ₂₈ Fe	1.91	1.89	2.07	2.11
C ₁₈₆ X ₄ H ₃₄ Fe	1.91	1.90	2.07	2.09
C ₂₆₀ X ₄ H ₄₀ Fe	1.88	1.89	2.06	2.10
C ₃₄₆ X ₄ H ₄₆ Fe	1.87	1.90	2.06	2.09

Table S6. Average metal-ligand bond lengths of increasingly large SACs with different coordinating atoms (N, O, P and S). All distances are in units of Å.

Figure S5. The metal dihedral angle, θ , is the dihedral angle between the Fe metal and the plane formed by any 3 of the 4 coordinating atoms. This angle is shown schematically in the P-coordinated 5-membered ring SAC. A negative value for this angle indicates that metal lies below the coordinating atom plane.

Table S7. Average metal–ligand bond lengths (BLs, in Å) of 5- and 6-membered SAC models, 14-membered macrocyclic complexes, and mononuclear transition-metal complex analogues with and without constraints out of the plane (i.e., the z-axis, for the 5-membered and 6-membered SAC only). Results are shown for cases where all coordinating atoms are one of four elements (N, O, P and S). Systems that were not constrained and have no result are indicated as "--".

	full as a second second section is at it as	a a sector a la secto
system	full geometry optimization	constrained z-axis
	average M-L BL (A)	average M-L BL (A)
	5-membered ring SAC	
Fe-N-C	1.97	1.97
Fe-O-C	1.99	1.99
Fe-P-C	2.19	1.95
Fe-S-C	2.15	1.97
	6-membered ring SAC	
Fe-N-C	1.92	1.92
Fe-O-C	1.89	1.89
Fe-P-C	2.15	2.01
Fe-S-C	2.21	1.94
	14-membered macrocycle	
Fe-N-C	1.84	
Fe-O-C	1.87	
Fe-P-C	2.09	
Fe-S-C	2.13	
octal	nedral transition metal comp	olex
Fe(pyridine) ₆	2.11	
Fe(4H-pyran) ₆	2.17	
Fe(phosphinine)6	2.25	
Fe(4H-thiopyran) ₆	2.38	
Fe(pyrrole) ₆	2.11	
Fe(furan) ₆	2.03	
Fe(phospholide)6	2.33	
Fe(thiophene)6	2.38	

Figure S6. The metal dihedral angle, θ (labeled on the N-coordinating 5-membered ring oxo intermediate structure), is the dihedral angle between the Fe metal and the plane formed by 3 coordinating atoms. We annotate this angle for each intermediate (resting state, oxo, hydroxyl, methanol) in the radical rebound mechanism for conversion of methane to methanol.

Table S8. The average dopant–dopant distance (in Å) for 5- and 6-membered SAC models with different coordinating atoms (N, O, P and S).

system	dopant-dopant distance (Å)		
5-membered	ring SAC		
Fe-N-C	2.80		
Fe-O-C	2.80		
Fe-P-C	3.10		
Fe-S-C	3.11		
6-membered ring SAC			
Fe-N-C	2.63		
Fe-O-C	2.78		
Fe-P-C	2.95		
Fe-S-C	3.13		

Table S9. Covalent radii of X bonds (in Å). The low-spin (LS) Fe covalent radius is estimated to be 1.42 Å^1 .

Х	X radius (Å)
N	0.71
0	0.66
Р	1.07
S	1.05

Table S10. Relative metal-ligand bond length, $d_{rel}(Fe-X)$, of 5- and 6-membered ring SAC models, 14-membered macrocyclic Fe complexes and mononuclear transition-metal complex analogues with different coordinating atoms (N, O, P and S). All relative bond lengths are unitless because they are the ratios of the bond length to the sum of the covalent radii of the substituent atoms.

system	d _{rel} (Fe–X)		
5-membered ring SAC			
Fe-N-C	0.93		
Fe-O-C	0.95		
Fe-P-C	0.88		
Fe-S-C	0.87		
6-membered ri	ng SAC		
Fe-N-C	0.90		
Fe-O-C	0.91		
Fe-P-C	0.87		
Fe-S-C	0.89		
14-membered macrocycle			
Fe-N-C	0.86		
Fe-O-C	0.90		
Fe-P-C	0.84		
Fe-S-C	0.86		
octahedral transition	metal complex		
Fe(pyridine) ₆	0.99		
Fe(4H-pyran) ₆	1.04		
Fe(phosphinine) ₆	0.90		
Fe(4H-thiopyran) ₆	0.96		
Fe(pyrrole) ₆	0.99		
Fe(furan) ₆	0.97		
Fe(phospholide) ₆	0.94		
Fe(thiophene) ₆	0.96		

ovetom	full geometry optimization	constrained z-axis	difference between full		
System	complexation energy (eV)	complexation energy (eV)	and constrained (eV)		
	5-membe	ered ring SAC			
Fe-N-C	-38.08	-38.09	0.01		
Fe-O-C	-31.18	-31.18	0.00		
Fe-P-C	-33.54	-32.17	-1.37		
Fe-S-C	-32.63	-32.03	-0.60		
6-membered ring SAC					
Fe-N-C	-37.37	-37.58	0.20		
Fe-O-C	-28.60	-28.75	0.14		
Fe-P-C	-33.64	-32.10	-1.54		
Fe-S-C	-31.39	-29.84	-1.55		
	14-member	red macrocycle			
Fe-N-C	-38.24				
Fe-O-C	-28.10				
Fe-P-C	-33.39				
Fe-S-C	-29.14				

Table S11. Complexation energies (in eV) of 5- and 6-membered ring SAC models and 14membered macrocyclic Fe complexes with different coordinating atoms (N, O, P and S) and constraint conditions.

Table S12. Comparison of Mulliken spin density on the metal for each intermediate.

_	-			
resting state	metal oxo	metal hydroxyl	metal methanol	
Mulliken	Mulliken	Mulliken spin	Mulliken spin	
spin density	spin density	density	density	
5-membered ring SAC				
0.00	0.00	0.989	0.00	
0.00	0.00	0.814	0.00	
0.00	0.00	0.975	0.00	
0.00	0.00	0.893	0.00	
6-membered ring SAC				
0.00	0.00	0.952	0.00	
0.00	0.00	1.034	0.00	
0.00	0.00	0.955	0.00	
0.00	0.00	0.986	0.00	
	resting state Mulliken spin density 5-me 0.00 0.00 0.00 6-me 0.00 0.00 0.00 0.00	resting state metal oxo Mulliken Mulliken spin density spin density 5-membered ring \$ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	resting state metal oxo Mulliken metal hydroxyl Mulliken spin density spin density Mulliken spin density 5-membered ring SAC 0.00 0.00 0.989 0.00 0.00 0.814 0.00 0.00 0.975 0.00 0.00 0.893 6-membered ring SAC 0.00 0.00 0.893 0.00 0.00 0.952 0.00 0.00 1.034 0.00 0.00 0.955 0.00 0.00 0.986	

Table S13. The natural charges and Fe 3*d* orbital populations for 5- and 6-membered SACs with different coordinating atoms (N, O, P and S).

8	, ,				
system	natural charge	NBO 3d orbital population			
5-membered ring SACs					
Fe-N-C	0.87457	6.74			
Fe-O-C	0.98444	6.64			
Fe-P-C	0.35333	7.26			
Fe-S-C	0.59156	7.07			
6-membered ring SACs					
Fe-N-C	1.03059	6.71			
Fe-O-C	0.56377	7.05			
Fe-P-C	0.36083	7.24			
Fe-S-C	0.58992	7.07			

Table S14. The flake oxidation energy (in eV) (i.e., the energy for oxo formation) for 5- and 6membered flakes with different coordinating atoms (N, O, P and S) and no metal present. The favorable oxo formation on the P-containing flake is due to formation of a μ -oxo that cannot form when a metal is present. All other oxidation energies are less favorable than the equivalent metal-oxo formation.

system	flake oxidation energy (eV)		
5-membered ring flakes			
N-C	-0.40		
O-C	2.95		
P-C	-2.61		
S-C	-0.23		
6-membered ring flakes			
N-C	0.52		
O-C	2.50		
P-C	-5.77		
S-C	-0.62		

Figure S7. $\Delta E(\text{oxo})$ vs $\Delta E(\text{HAT})$ (top) and $\Delta E(\text{oxo})$ vs $\Delta E(\text{release})$ (bottom) reaction energies (in kcal/mol) of representative TMCs from prior work² computed with B3LYP/LACVP* compared to SAC reaction energies computed with ω PBEh/LACVP*, as reported in the main text, (circles) and B3LYP/LACVP* single-point energies (triangles) on the SAC models. For a subset of O-, P- and S-doped SACs in this work, the B3LYP single-point energy calculations did not converge. The TMCs from prior work are the full LS Fe(II) subset from the square pyramidal constrained (SQ) set of Ref. 2. The TMC KDEs are colored in gray and shown as contour lines with decreasing saturation in 7 evenly spaced levels. Although a different functional is employed, the energy range sampled on SACs is comparable with changing functional.

Figure S8. Parity plot of SAC reaction energies ($\Delta E(oxo)$, $\Delta E(HAT)$ and $\Delta E(release)$ between the $\omega PBEh$ and B3LYP functionals with the LACVP* basis set in kcal/mol. The B3LYP/LACVP* energies are evaluated as single-point energies on the $\omega PBEh$ structures.

Figure S9. $\Delta E(\text{oxo})$ vs $\Delta E(\text{HAT})$ (top) and $\Delta E(\text{oxo})$ vs $\Delta E(\text{release})$ (bottom) reaction energies (in kcal/mol) of representative transition-metal complexes (TMCs) from prior work² compared to 5- (pentagon symbols) and 6-membered (hexagon symbols) ring SAC systems. Both TMCs and SACs are colored by the metal-coordinating atoms in the ligands, as indicated in inset legend. The TMCs are from the all LS Fe(II) in the square pyramidal constrained (SQ) set in Ref. 2. For the complexes containing multiple coordinating atom elements, the symbol is colored by the heavier coordinating atom. The SACs are further distinguished by full geometry optimization (opaque) and constrained z-axis optimization (translucent).

Figure S10. $\Delta E(\text{oxo})$ vs $\Delta E(\text{HAT})$ (top) and $\Delta E(\text{oxo})$ vs $\Delta E(\text{release})$ (bottom) reaction energies (in kcal/mol) of 80 homoleptic LS Fe(II) molecular complexes from the SQ data set in Ref.² relative to 5- (pentagon) and 6-membered (hexagon) ring SAC systems. Both TMCs and SACs are colored by metal-coordinating atoms as indicated in inset legend. The TMCs are from the all LS Fe(II) in the square pyramidal constrained (SQ) set in Ref. 2. Representative structures of a O-doped 6-membered ring graphene flake SAC with bond length of 1.9 Å and Fe(II)(OH₂)₄-oxo with an out-of-plane distortion angle of 10° and bond length of 2.2 Å are shown in inset. The SACs are further distinguished by full geometry optimization (opaque) and constrained z-axis optimization (translucent).

Figure S11. $\Delta E(\text{oxo})$ vs $\Delta E(\text{HAT})$ (top) and $\Delta E(\text{oxo})$ vs $\Delta E(\text{release})$ (bottom) reaction energies (in kcal/mol) of representative TMCs from prior work² compared to 5- (pentagon symbols) and 6-membered (hexagon symbols) ring SAC systems. The SACs are colored by the metal-coordinating atoms in the ligands, as indicated in inset legend. The TMCs are from the all LS Fe(II) in the tetragonal equilibrium (TE) set in Ref. 2. The TMCs KDEs are colored in gray and shown as contour lines with decreasing saturation in 7 evenly spaced levels. The SACs are distinguished by full geometry optimization (opaque) and constrained z-axis optimization (translucent).

Figure S12. $\Delta E(\text{oxo})$ vs $\Delta E(\text{HAT})$ (top) and $\Delta E(\text{oxo})$ vs $\Delta E(\text{release})$ (bottom) reaction energies (in kcal/mol) for representative TMCs from prior work². The TMCs are from the all LS Fe(II) in the tetragonal equilibrium (TE) and square pyramidal (SQ) set in Ref. 2. The TE and SQ TMC KDEs are colored in red and blue, respectively, and shown as contour lines with decreasing saturation in 7 evenly spaced levels.

Figure S13. $\Delta E(\text{oxo})$ vs $\Delta E(\text{HAT})$ (top) and $\Delta E(\text{oxo})$ vs $\Delta E(\text{release})$ (bottom) reaction energies (in kcal/mol) of representative TMCs from prior work². The TMCs are from the all LS Fe(II) in the tetragonal equilibrium (TE) and square pyramidal (SQ) set in Ref. 2. The TE and SQ TMC scatters are colored in red and blue, respectively. To show structure in the data, the y-axis scale has been slightly truncated in a manner that excludes four points from LS Fe(II) complexes in the TE set (in red) with very high release values.

Figure S14. The metal dihedral angle, θ (labeled on the N-coordinating SAC oxo intermediate structure), is the dihedral angle between the Fe metal and the plane formed by 3 coordinating atoms. We report this angle for each intermediate (resting state, oxo, hydroxo, methanol) in the radical rebound mechanism for methane-to-methanol conversion.

Figure S15. The last cycle of Nudged Elastic Band (NEB) in TeraChem (ω PBEh/LACVP*) for oxo formation putative transition states on N-doped 5- and 6-membered ring SACs (top and bottom respectively).

Figure S16. The bond length scan between O and H during hydrogen atom transfer (HAT) on N-doped 5- and 6-membered ring SACs (left and right respectively).

References

- 1. B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan and S. Alvarez, *Dalton Trans.*, 2008, 2832-2838.
- 2. A. Nandy and H. J. Kulik, ACS Catal., 2020, 10, 15033-15047.