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Figure S2. N2 adsorption-desorption isotherm (a) and pore size distribution curves (b) for NPCH, 
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respectively, which were obtained by STEM).
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Table S1 Comparison of HER catalystic activity between RuBx-Ru@BNPCH product and other 

well-developed Ru-based and Transition metal boride based HER electrocatalysts in 1.0 M KOH 

solution.

5

Catalysts E(J=10mA cm
-2

)

(mV)

Tafel slope 

(mV dec-1)

Reference

RuBx-Ru@BNPCH 5 22.2 This work

Pt/C 22 48.9 1

Ru2B3@BNC 14 53.9 1

RuB2 28 28.7 2

Ru NCs/BNG 14 28.9 3

Ru2B3 14.6 27.3 4

RuSe2 29.5 39.2 5

RuIrOx 13 23 6

3D RuCu NCs  18 59 7

RuP2@NPC 52 69 8

Co2B-500/NG 127 92.4 9

FeB2 61 87.5 10

Co-50Ni-B/CC 80 88.2 11

Co-B-P/NF 42 42.1 12



Figure S5. LSV curves of RuBx-Ru@BNPCH with the mass of Ru in 1M KOH and (b) histogram of 

mass activity at different overpotentials

Figure S6.  Cyclic voltammetry tests in a non-Faradaic region (0.46 to 0.66 V vs RHE) with 

different scan rates to determine the electrochemical double layer capacitance Cdl: the RuBx-

Ru@BNPCH (a) and Ru@NPCH (b) in 1.0 M KOH.
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Table S2. Comparison of HER catalystic activity between RuBx-Ru@BNPCH product and other 

well-developed Ru-based and Transition metal boride based HER electrocatalysts in 0.5 M 

H2SO4 solution.

Catalysts E(J=10mA cm
-2

)

(mV)

Tafel slope

(mV dec-1)

Reference

RuBx-Ru@BNPCH 33 37.8 This work

Ru2B3@BNC 41 60.7 1

RuTe2-M 35.7 46.6 5

RuP2@NPC 38 38 8

RuB2 52 66.9 13

Pt/C 34 31.2 13

RuP@NPC 51 46 14 

RuP-475 47 39 15

α-MoB2 120 74.2 16

Ni3B 79 85.32 17
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Figure S7. TEM a) and HRTEM b) images for RuBx-Ru@BNPCH after the CV cycling test

Figure S8. Polarization curves of RuBx-Ru@BNPCH for several batches of samples with the same 

method
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Figure S9.  (a) LSV curves of water electrolysis for RuBx-Ru@BNPCH//RuO2 and commercial 

Pt/C//RuO2 at a scan rate of 5 mV s−1 in 1 M KOH, (b) Chronoamperometric curve for water 

electrolysis with constant current density of 10 mA cm−2 for RuBx-Ru@BNPCH//RuO2 in 1 M 

KOH.
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