Supporting Information

One-step integration of amorphous RuBx and crystalline Ru nanoparticles into N-doped porous carbon polyhedrals for robust electrocatalytic activity towards HER in both acidic and basic media

Jie Tang, Biao Wang, Yanzheng Zhang, Xiaohua Zhang *, Qinghui Shen, Junfeng Qin, Song Xue, Xi Guo, Cuicui Du* and Jinhua Chen*

State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Provincial Hunan Key Laboratory for Costeffective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.

^{*} Corresponding author. Tel.: +86-731-88821848

E-mail address: mickyxie@hnu.edu.cn (X. H. Zhang), ducc@hnu.edu.cn (C. C. Du), chenjinhua@hnu. edu.cn (J. H. Chen).

Contents:

Supplementary 1. TEM images for a) ZIF-8 and b) NPCH

Supplementary 2. N₂ adsorption-desorption isotherm (a) and pore size distribution curves (b) for NPCH, RuB_x-Ru@BNPCH and Ru@NPCH

Supplementary 3. XRD patterns of ZIF-8, NPCH, RuB_x-Ru@BNPCH and Ru@NPCH

- Supplementary 4. EELS spectra of RuBx-Ru@BNPCH (the insets are schematic for EELS acquisition regions and the points for a and b from amorphous particles and crystalline particles, respectively, which were obtained by STEM)
- Supplementary 5. Comparison of HER catalystic activity between RuB_x-Ru@BNPCH product and other well-developed Ru-based and Transition metal boride based HER electrocatalysts in 1.0 M KOH solution
- Supplementary 6. LSV curves of RuBx-Ru@BNPCH with the mass of Ru in 1M KOH and (b) histogram of mass activity at different overpotentials
- Supplementary 7. Cyclic voltammetry tests in a non-Faradaic region (0.46 to 0.66 V vs RHE) with different scan rates to determine the electrochemical double layer capacitance C_{dl}: the RuBx-Ru@BNPCH (a) and Ru@NPCH (b) in 1.0 M KOH
- Supplementary 8. Comparison of HER catalystic activity between RuB_x-Ru@BNPCH product and other well-developed Ru-based and Transition metal boride based HER electrocatalysts in 0.5 M H₂SO₄ solution

Supplementary 9. TEM a) and HRTEM b) images for RuBx-Ru@BNPCH after the CV cycling test

Supplementary 10. Polarization curves of RuBx-Ru@BNPCH for several batches of samples with the same method

Supplementary 11. (a) LSV curves of water electrolysis for RuBx-Ru@BNPCH//RuO₂ and commercial Pt/C//RuO₂ at a scan rate of 5 mV s⁻¹ in 1 M KOH, (b) Chronoamperometric curve for water electrolysis with constant current density of 10 mA cm⁻² for RuBx-Ru@BNPCH//RuO₂ in 1 M KOH.

Figure S1. TEM images for a) ZIF-8 and b) NPCH

Figure S2. N₂ adsorption-desorption isotherm (a) and pore size distribution curves (b) for NPCH,

RuB_x-Ru@BNPCH and Ru@NPCH

Figure S3. XRD patterns of ZIF-8, NPCH, RuB_x-Ru@BNPCH and Ru@NPCH

Figure S4. EELS spectra of RuBx-Ru@BNPCH (the insets are schematic for EELS acquisition regions and the points for a and b from amorphous particles and crystalline particles, respectively, which were obtained by STEM).

Table S1 Comparison of HER catalystic activity between RuB_x-Ru@BNPCH product and other well-developed Ru-based and Transition metal boride based HER electrocatalysts in 1.0 M KOH solution.

Catalysts	E _(J=10mA cm⁻²) (mV)	Tafel slope (mV dec⁻¹)	Reference
RuB _x -Ru@BNPCH	5	22.2	This work
Pt/C	22	48.9	1
Ru ₂ B ₃ @BNC	14	53.9	1
RuB ₂	28	28.7	2
Ru NCs/BNG	14	28.9	3
Ru_2B_3	14.6	27.3	4
RuSe ₂	29.5	39.2	5
RulrO _x	13	23	6
3D RuCu NCs	18	59	7
RuP₂@NPC	52	69	8
Co ₂ B-500/NG	127	92.4	9
FeB ₂	61	87.5	10
Co-50Ni-B/CC	80	88.2	11
Co-B-P/NF	42	42.1	12

Figure S5. LSV curves of RuBx-Ru@BNPCH with the mass of Ru in 1M KOH and (b) histogram of mass activity at different overpotentials

Figure S6. Cyclic voltammetry tests in a non-Faradaic region (0.46 to 0.66 V vs RHE) with different scan rates to determine the electrochemical double layer capacitance C_{dl} : the RuBx-Ru@BNPCH (a) and Ru@NPCH (b) in 1.0 M KOH.

Table S2. Comparison of HER catalystic activity between RuB_x -Ru@BNPCH product and other well-developed Ru-based and Transition metal boride based HER electrocatalysts in 0.5 M H_2SO_4 solution.

Catalysts	E _{(J=10mA cm} ⁻²) (mV)	Tafel slope (mV dec ⁻¹)	Reference
RuB _x -Ru@BNPCH	33	37.8	This work
Ru ₂ B ₃ @BNC	41	60.7	1
RuTe ₂ -M	35.7	46.6	5
RuP ₂ @NPC	38	38	8
RuB ₂	52	66.9	13
Pt/C	34	31.2	13
RuP@NPC	51	46	14
RuP-475	47	39	15
α -MoB ₂	120	74.2	16
Ni ₃ B	79	85.32	17

Figure S7. TEM a) and HRTEM b) images for RuBx-Ru@BNPCH after the CV cycling test

Figure S8. Polarization curves of RuBx-Ru@BNPCH for several batches of samples with the same method

Figure S9. (a) LSV curves of water electrolysis for RuBx-Ru@BNPCH//RuO₂ and commercial $Pt/C//RuO_2$ at a scan rate of 5 mV s⁻¹ in 1 M KOH, (b) Chronoamperometric curve for water electrolysis with constant current density of 10 mA cm⁻² for RuBx-Ru@BNPCH//RuO₂ in 1 M KOH.

Reference

- 1. Y. Qiao, P. Yuan, C.-W. Pao, Y. Cheng, Z. Pu, Q. Xu, S. Mu and J. Zhang, *Nano Energy*, 2020, **75**, 104881.
- Q. Li, X. Zou, X. Ai, H. Chen, L. Sun and X. Zou, Advanced Energy Materials, 2018, DOI: 10.1002/aenm.201803369, 1803369.
- S. Ye, F. Luo, T. Xu, P. Zhang, H. Shi, S. Qin, J. Wu, C. He, X. Ouyang, Q. Zhang, J. Liu and X. Sun, *Nano Energy*, 2020, 68, 104301.
- 4. X. Zou, L. Wang, X. Ai, H. Chen and X. Zou, *Chemical communications*, 2020, 56, 3061-3064.
- 5. Z. Zhang, C. Jiang, P. Li, K. Yao, Z. Zhao, J. Fan, H. Li and H. Wang, Small, 2021, 17, e2007333.
- Z. Zhuang, Y. Wang, C. Q. Xu, S. Liu, C. Chen, Q. Peng, Z. Zhuang, H. Xiao, Y. Pan, S. Lu, R. Yu, W. C. Cheong, X. Cao, K. Wu, K. Sun, Y. Wang, D. Wang, J. Li and Y. Li, *Nature communications*, 2019, **10**, 4875.
- 7. D. Cao, J. Wang, H. Xu and D. Cheng, Small, 2020, 16, 2000924.
- 8. Z. Pu, I. S. Amiinu, Z. Kou, W. Li and S. Mu, Angewandte Chemie International Edition, 2017, 56, 11559-11564.
- 9. J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun, C. Somsen, M. Muhler and W. Schuhmann, *Advanced Energy Materials*, 2016, **6**, 1502313.
- H. Li, P. Wen, Q. Li, C. Dun, J. Xing, C. Lu, S. Adhikari, L. Jiang, D. L. Carroll and S. M. Geyer, Advanced Energy Materials, 2017, 7, 1700513.
- 11. M. Sheng, Q. Wu, Y. Wang, F. Liao, Q. Zhou, J. Hou and W. Weng, *Electrochemistry Communications*, 2018, **93**, 104-108.

- 12. H. Sun, X. Xu, Z. Yan, X. Chen, L. Jiao, F. Cheng and J. Chen, *Journal of Materials Chemistry A*, 2018, **6**, 22062-22069.
- 13. D. Chen, T. Liu, P. Wang, J. Zhao, C. Zhang, R. Cheng, W. Li, P. Ji, Z. Pu and S. Mu, *ACS Energy Letters*, 2020, **5**, 2909-2915.
- J.-Q. Chi, W.-K. Gao, J.-H. Lin, B. Dong, K.-L. Yan, J.-F. Qin, B. Liu, Y.-M. Chai and C.-G. Liu, *ChemSusChem*, 2018, 11, 743-752.
- 15. Q. Chang, J. Ma, Y. Zhu, Z. Li, D. Xu, X. Duan, W. Peng, Y. Li, G. Zhang, F. Zhang and X. Fan, ACS Sustainable Chemistry & Engineering, 2018, **6**, 6388-6394.
- 16. Y. Chen, G. Yu, W. Chen, Y. Liu, G. D. Li, P. Zhu, Q. Tao, Q. Li, J. Liu, X. Shen, H. Li, X. Huang, D. Wang, T. Asefa and X. Zou, *Journal of the American Chemical Society*, 2017, **139**, 12370-12373.
- 17. X. Xu, Y. Deng, M. Gu, B. Sun, Z. Liang, Y. Xue, Y. Guo, J. Tian and H. Cui, *Applied Surface Science*, 2019, **470**, 591-595.