Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Hierarchical MoS₂-NiS nanosheet-based nanotubes@N-doped carbon

coupled with Ether-based electrolytes towards high-performance Na-

ion Batteries

Fan Yang^a, Shige Wang^a, Jieduo Guan^a, Lianyi Shao^a, Xiaoyan Shi^a, Junjie Cai^{a,b*},

Zhipeng Sun^a*

^a School of Materials and Energy, Guangzhou 510006, Guangdong University of Technology, Guangzhou 510006, PR China

^b Xi'an Jiaotong University Suzhou Institute, Suzhou, Suzhou 215123, PR China

Corresponding Author: caijunjie@gdut.edu.cn and zpsunxj@163.com

Fig. S1 EDS analysis of Ni/Mo-Precursor.

Fig. S2 Raman spectrum of MNS-HNT@NC

Fig. S3 (a) XRD pattern and (b) SEM image of MoS₂ NWs.

Fig. S4 (a) XRD pattern and (b) SEM image of MNS-HNT.

Fig. S5 (a) XPS survey spectrum, and (b) the corresponding C 1s of MNS-HNT@NC

Fig. S6 TGA curve of MNS-HNT@NC tested under air flow.

Calculation method for determining the content in the MNS-HNT@NC:

TGA curves of MNS-HNT@NC from 30 °C to 800 °C. During the TGA test in airflow, NiS and MoS₂ can be converted to the corresponding high-temperature stable phase, NiO and MoO₃, respectively, on the chemical reactions of NiS+O₂ \rightarrow NiO+SO₂; MoS₂+O₂ \rightarrow MoO₃+SO₂. The EDS result (Fig. S1) shows that the atomic ratio of Ni to Mo atoms in the Ni/Mo-precursor was 15.43%:10.912%, and the NiS/MoS₂ and NiO/MoO₃ are derived from Ni/Mo-precursor. As a result, the mole ratio of Ni to Mo in the sample after the TGA test should be 1.414:1. Based on the molecule weight of NiS and MoS₂; NiO and MoO₃, the mass of each component can be calculated, respectively:

$$m_{Ni0} = \frac{1.414 \times 74.1}{1.414 \times 74.1 + 144} \times 73.1\%m = 30.8\%m$$
$$m_{Mo0_3} = \frac{144}{1.414 \times 74.1 + 144} \times 73.1\%m = 42.3\%m$$

$$m_{NiS} = \frac{90.7}{74.1} \times m_{NiO} = 37.7\%m$$
$$m_{MoS_2} = \frac{160}{144} \times m_{MoO_3} = 47.0\%m$$
$$m_{moisture} = 5.5\%m$$
$$m_C = m - m_{NiS} - m_{MoS_2} - m_{moisture} = 9.8\%m$$

After deducting the quality of water, the proportions of each component are as follows:

Ratio of NiS =
$$\frac{m_{NiS}}{m - m_{moisture}} \times 100 = 39.9\%$$

Ratio of
$$MoS_2 = \frac{m_{MoS_2}}{m - m_{moisture}} \times 100 = 49.7\%$$

Ratio of $NC = \frac{m_C}{m - m_{moisture}} \times 100 = 10.4\%$

Fig. S7 CV curves of MNS-HNT@NC: (a) in Ether-based electrolyte; (b) in Ester-based electrolyte.

Fig. S8 (a) Long-term cycling performance of MNS-HNT and MoS_2 NWs at 2 A g⁻¹; the charge/discharge curves at of MNS-HNT (b) and MoS_2 NWs (c) different cycle.

Fig. S9 SEM images of the MNS-HNT@NC anode after long-term cycling.

Fig. S10 The charge/discharge curves at different current densities of MoS_2 NWs (a), and MNS-HNT (b).

Fig. S11 Discharge/charge curves of MNS-HNT@NC at 1 A g^{-1} : (a) Ether-based electrolyte (b) Ester-based electrolyte.

Fig. S12 The charge/discharge curves at different current densities of Ester-based electrolyte.

Fig. S13 (a) Nyquist plots from EIS of electrodes tested in Ester-based electrolyte, (b) the R_{ct} of each electrode in different electrolytes.

Table S1. Comparison of MoS ₂ -NiS@NC with some related works for SIBs.				
Materials	Electrolyte	ICE	Capacity (mAh g ⁻¹)	References
MNS-HNT@NC	Ether-based	94%	391 mAh g ⁻¹ after	This work
			700 cycles at 2 A g^{-1}	
MoS ₂ /Ni ₃ S ₂ @MoS ₂	Ester-based	77%	462 mA g^{-1} after	[40]
			400 cycles at 2 A g^{-1}	
NiS@NCNT MSHMs	Ester-based	58.3%	$289.8 \text{ mAh g}^{-1} \text{ after}$	[41]
			500 cycles at 1 A g^{-1}	
NiS ₂ NP/p-CNF	Ester-based	78%	140 mAh g ⁻¹ after	[42]
			1000 cycles at 2 A g^{-1}	
NiS/GNS	Ester-based	77.2%	483 mAh g ⁻¹ after	[43]
			100 cycles at 0.2 A g^{-1}	
NiS ₂ /NC	Ester-based	73.6%	356.2 mAh g ⁻¹ after	[44]
			300 cycles at 0.5 A g^{-1}	
MoS ₂ @C-700	Ester-based	79%	351.6 mAh g ⁻¹ after	[45]
			200 cycles at 1 A g^{-1}	
MoS ₂ /C-2.5	Ester-based	78.9%	400 mAh g ⁻¹ after	[46]
			300 cycles at 0.5 A g^{-1}	
MoS ₂ @C-CMC	Ester-based	79.4%	286 mAh g ⁻¹ after	[47]
			100 cycles at 0.08 A g^{-1}	
tulip-MoS ₂ /NG	Ester-based	55%	151 mAh g ⁻¹ after	[48]
			1000 cycles at 5 A g^{-1}	
NiS/MoS ₂ /C	Ester-based	80.2%	335 mAh g ⁻¹ after	[49]
			200 cycles at 1 A g^{-1}	