Supplementary Information

Facile and rapid fabrication of porous CuBr films by a solution oxidation and their application for the exclusive detection of NH₃ at room temperature

Sang-Kwon Kim,^a Byeong-Hun Yu,^a Chan Woong Na,^b Jong-Heun Lee,^c and Ji-Wook Yoon^{a,*}

^aDepartment of Information Materials Engineering, Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea. ^bDongnam Division, Korea Institute of Industrial Technology, Busan 46938, Republic of Korea ^cDepartment of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea. E-mail: jwyoon@jbnu.ac.kr (Ji-Wook Yoon)

Fig. S1 Setup and flow configuration for gas sensing test.

a 10.9 nm	b ↓21.8 nm	C 34.7 nm	d	e 99.2 nm
	\uparrow	······	······	······
100 nm	100 nm	100 nm	100 nm	100 nm

Fig. S2 SEM images of cross-sectional views of the Cu films prepared by sputtering.

Fig. S3 XRD patterns of the Cu films prepared by sputtering.

Fig. S4 SEM images of top (a) and cross-sectional (b) views of the 10n-120s sensor. CuBr particles were rarely observed on the sensor substrate after oxidation in solution.

Fig. S5 XRD pattern of the CuBr films prepared by immersing 20 - 100 nm-thick Cu films in the CuBr₂ solutions for 120 s.

Fig. S6 XRD pattern of the CuBr film prepared by immersing 30 nm-thick Cu films in the $CuBr_2$ solutions for 10 - 300 s: (a) 30n-10s, (b) 30n-30s, (c) 30n-60s, (d) 30n-180s, and (e) 30n-300s. All the specimens consisted of CuBr, whereas the 30n-10s specimen additionally contained Cu.

Fig. S7 TEM images of the FIB-treated CuBr film prepared by immersing 30 nm-thick Cu films in the CuBr₂ solutions for (a) 10, (b) 30, (c) 60, and (d) 120 s. Elemental mapping images for the FIB-treated 30n-10s (e) and 30n-30s (f). This clearly shows that the oxidation of Cu to Cu⁺ in CuBr was complete within 30 s.

Fig. S8 (a) SEM image and (b) particle size distribution of the 30n-10s film.

Fig. S9 Weight loss of commercial CuBr powders measured after dissolving in (a) pure methanol and (b) 0.1 M CuBr_2 solution for 3 h. The weight loss of CuBr powders in 0.1 M CuBr_2 solution (86.1%) was significantly higher than that in pure methanol (39.3%).

Fig. S10 Cross-sectional SEM images of the 30n-10s (a), 30n-30s (b), 30n-60s (c), 30n-180s (d), and 30n-300s (e) specimens.

Fig. S11 SEM images of the CuBr films prepared by immersing 30 nm-thick Cu films in (a) 0.001 M and (b) 0.1 M for 120 s.

Fig. S12 Resistance changes of the 30n-120s sensor upon exposure to 5 ppm (a) NO_2 , (b) acetone, (c) CO, (d) ethanol, (e) acetaldehyde, and (f) formaldehyde.

Fig. S13 (a) Resistance changes and (b) gas response of the 30n-120s sensor to 0.25 - 1 ppm NH₃ at various humidity levels.

Structur e	Synthesis method	Synthesis temperature (°C)	Response (-)	Conc. (ppm)	Humidity condition	Ref.
Particles	Powder mixing	RT	12.7	5	Dry	27
Dense film	Solution oxidation	RT	5.5	1	-	43
	RF sputtering	RT	20	5	dry	44
	RF sputtering	RT	8	10	dry	45
	RF sputtering	RT	12	10	dry	46
Porous film	Flame pyrolysis and dry bromination	1500-2000	276	5	dry	26
			20	1	r.h. 90%	
	Thermal	500	220	5	dry	30
	evaporation		12	1	r.h. 80%	
	Solution oxidation	RT	12	10	dry	35
	Solution oxidation	RT	211	5	dry	This work
			12.2	1	r.h. 80%	This work

Table S1 Comparison of our CuBr sensor with those reported in the literature.